ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Flow control method for impinging shock/boundary-layer interaction based on swept-back cowl configuration
Received date: 2022-10-08
Revised date: 2022-10-28
Accepted date: 2022-11-25
Online published: 2022-11-29
Supported by
National Natural Science Foundation of China(12272177);National Science and Technology Major Project (J2019-Ⅱ-0014-0035);Young Talents Scholar Lift Project(2021-JCJQ-QT-064);1912 Projects(2019-JCJQ-DA-001-067);State Key Laboratory of Transient Physics Fund(6142604200212)
The strong cowl shock wave/boundary-layer interaction within the hypersonic inlet induces large scale separation and strong energy loss. To address this problem, we propose a flow control method for impinging shock wave/boundary-layer interaction based on the swept-back cowl configuration. The flow characteristics with swept/unswept cowl configurations were numerically revealed with the incoming Mach number of 3.0 and the cowl compression angle of 18°. The results show that the length-scale of the separation, induced by the swept-back cowl shock wave/boundary-layer interaction, increases along the spanwise direction. By utilizing the lateral pressure gradient resulted from three-dimensional swept shock waves, it forces the low momentum flow to migrate from the symmetry plane to the sidewall, leading to an over 50.6% diminution of the separation bubble compared to that of the unswept cowl configuration. In addition, the pressure distribution in the interaction region shows an elliptical similarity with the center of separation line curvature as the virtual center.
Canmin LI , Hexia HUANG , Gang LIANG , Jinghao LYU , Jia CAI , Huijun TAN . Flow control method for impinging shock/boundary-layer interaction based on swept-back cowl configuration[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(16) : 128091 -128091 . DOI: 10.7527/S1000-6893.2022.28091
1 | 刘大响. 航空发动机设计手册[M]. 第七册. 北京: 航空工业出版社, 2000. |
LIU D X. Aeroengine design manual[M]. 7th ed. Beijing: Aviation Industry Publishing House, 2000 (in Chinese). | |
2 | 黄河峡, 谭慧俊, 庄逸, 等. 高超声速进气道/隔离段内流特性研究进展[J]. 推进技术, 2018, 39(10): 2252-2273. |
HUANG H X, TAN H J, ZHUANG Y, et al. Progress in internal flow characteristics of hypersonic inlet/isolator[J]. Journal of Propulsion Technology, 2018, 39(10): 2252-2273 (in Chinese). | |
3 | ERENGIL M E, DOLLING D S. Effects of sweepback on unsteady separation in Mach 5 compression ramp interactions[J]. AIAA Journal, 1993, 31(2): 302-311. |
4 | SHENG F J, TAN H J, ZHUANG Y, et al. Visualization of conical vortex and shock in swept shock/turbulent boundary layer interaction flow[J]. Journal of Visualization, 2018, 21(6): 909-914. |
5 | HOLST K R, SCHMISSEUR J D. Reynolds-averaged navier-stokes simulations of swept shock wave boundary layer interactions at Mach 2 and 5: AIAA-2016-3337[R]. Reston: AIAA, 2016. |
6 | VANSTONE L, SALEEM M, SECKIN S, et al. Experimental investigation of unsteadiness of swept-ramp shock/boundary layer interactions at Mach 2: AIAA-2015-2932[R]. Reston: AIAA, 2015. |
7 | VANSTONE L, SALEEM M, SECKIN S, et al. Effect of upstream boundary layer on unsteadiness of swept-ramp shock/boundary layer interactions at Mach 2: AIAA-2016-0076[R]. Reston: AIAA, 2016. |
8 | VANSTONE L, MUSTA M N, SECKIN S, et al. Experimental study of the mean structure and quasi-conical scaling of a swept-compression-ramp interaction at Mach 2[J]. Journal of Fluid Mechanics, 2018, 841: 1-27. |
9 | SETTLES G S, TENG H Y. Cylindrical and conical flow regimes of three-dimensional shock/boundary-layer interactions[J]. AIAA Journal, 1984, 22(2): 194-200. |
10 | PADMANABHAN S, THREADGILL J A, LITTLE J C. Flow similarity in swept shock/boundary layer interactions: AIAA-2022-0942[R]. Reston: AIAA, 2022. |
11 | 陆小革, 易仕和, 何霖, 等. 高分辨率激波/边界层干扰时间演化过程分析[J]. 航空学报, 2022, 43(1): 626147. |
LU X G, YI S H, HE L, et al. Time evolution process of high resolution shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 626147 (in Chinese). | |
12 | 谢祝轩, 杨彦广, 王刚. 受限流动中激波诱导分离的结构分析[J]. 航空学报, 2022, 43(1): 626042. |
XIE Z X, YANG Y G, WANG G. Structure of shock-induced separation in confined flow[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 626042 (in Chinese). | |
13 | KUBOTA H, STOLLERY J L. An experimental study of the interaction between a glancing shock wave and a turbulent boundary layer[J]. Journal of Fluid Mechanics, 1982, 116: 431-458. |
14 | ALVI F S, SETTLES G S. Physical model of the swept shock wave/boundary-layer interaction flowfield[J]. AIAA Journal, 1992, 30(9): 2252-2258. |
15 | DOLLING D S, MCCLURE W B. Flowfield scaling in sharp fin-induced shock wave/turbulent boundary-layer interaction[J]. AIAA Journal, 1985, 23(2): 201-206. |
16 | DOLLING D S. Upstream influence in conically symmetric flow[J]. AIAA Journal, 1985, 23(6): 967-969. |
17 | 盛发家, 谭慧俊, 黄河峡, 等. 连续双扫掠激波/湍流边界层干扰流动特性研究[J]. 推进技术, 2019, 40(5): 1023-1031. |
SHENG F J, TAN H J, HUANG H X, et al. Investigation on flow characteristics of successive Bi-swept shock waves/turbulent boundary layer interaction[J]. Journal of Propulsion Technology, 2019, 40(5): 1023-1031 (in Chinese). | |
18 | HUANG H X, TAN H J, SUN S, et al. Evolution of supersonic corner vortex in a hypersonic inlet/isolator model[J]. Physics of Fluids, 2016, 28(12): 126101. |
19 | BLINDE P L, HUMBLE R A, VAN OUDHEUSDEN B W, et al. Effects of micro-ramps on a shock wave/turbulent boundary layer interaction[J]. Shock Waves, 2009, 19(6): 507-520. |
20 | H?BERLE J, GüLHAN A. Internal flowfield investigation of a hypersonic inlet at Mach 6 with bleed[J]. Journal of Propulsion and Power, 2007, 23(5): 1007-1017. |
21 | YANG H, LI F, SONG Y Y, et al. Numerical investigation of electrohydrodynamic (EHD) flow control in an S-shaped duct[J]. Plasma Science and Technology, 2012, 14(10): 897-904. |
22 | 蔡佳, 黄河峡, 唐学斌, 等. 展向压力分布可控的前体/压缩面气动设计方法及其流动特性[J]. 空气动力学学报, 2022, 40(1): 66-76. |
CAI J, HUANG H X, TANG X B, et al. Aerodynamic design method and flow features of forebody/compression surface with controlled lateral pressure distribution[J]. Acta Aerodynamica Sinica, 2022, 40(1): 66-76 (in Chinese). | |
23 | 石磊, 何国强, 秦飞, 等. 唇口形状对二元进气道性能影响数值模拟[J]. 推进技术, 2012, 33(5): 683-688. |
SHI L, HE G Q, QIN F, et al. Numerical investigation of effects of cowl lip shape on 2-D inlet[J]. Journal of Propulsion Technology, 2012, 33(5): 683-688 (in Chinese). | |
24 | 郭金默, 谢旅荣, 李晓驰, 等. 一种锯齿状唇口超声速轴对称进气道特性[J]. 航空动力学报, 2021, 36(2): 264-274. |
GUO J M, XIE L R, LI X C, et al. Characteristics of a supersonic axisymmetric inlet with saw tooth lip[J]. Journal of Aerospace Power, 2021, 36(2): 264-274 (in Chinese). | |
25 | HUANG H X, TAN H J, SUN S, et al. Unthrottled flows with complex background waves in curved isolators[J]. AIAA Journal, 2017, 55(9): 2942-2955. |
26 | HUANG H X, TAN H J, SUN S, et al. Letter: Transient interaction between plasma jet and supersonic compression ramp flow[J]. Physics of Fluids, 2018, 30(4): 041703. |
/
〈 |
|
〉 |