ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Vibration reduction optimization of complex thin-walled structures based on global POD reduced-order model
Received date: 2022-08-06
Revised date: 2022-10-20
Accepted date: 2022-11-16
Online published: 2022-11-29
Supported by
National Key Research and Development Program(2022YFB3400245);National Natural Science Foundation of China(11902065);Basic Research Funds for Central Universities(DUT21RC(3)013)
An efficient vibration reduction optimization method based on the global POD reduced-order model is proposed to improve the efficiency of frequency response analysis and vibration reduction optimization for complex thin-walled aerospace structures. In the offline stage, the sample configurations are increased by the CV-Voronoi sequence sampling method, which can adaptively determine the appropriate number of model updating with higher prediction accuracy than the traditional direct sampling method. The reduced basis matrix is updated with the POD method to construct a global reduced basis matrix for the optimized design space, then realizing the order reduction of the structural stiffness matrix, mass matrix, and damping matrix. In the online stage, the reduced-order model is used to replace the full-order model for rapid frequency response analysis to improve the analysis efficiency. Then the efficient global optimization method based on the surrogate model is used to quickly solve the optimized configuration parameters in the design space to further improve the optimization efficiency. The vibration reduction optimization examples of the cylindrical shells and S-shaped curved stiffened shells verify that the proposed method has advantages of high accuracy of the reduced-order model and high efficiency of optimization.
Zhao KE , Yongxin SHI , Peng ZHANG , Kuo TIAN , Bo WANG . Vibration reduction optimization of complex thin-walled structures based on global POD reduced-order model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(13) : 227900 -227900 . DOI: 10.7527/S1000-6893.2022.27900
1 | 李增聪, 田阔, 赵海心. 面向多级加筋壳的高效变保真度代理模型[J]. 航空学报, 2020, 41(7): 623435. |
LI Z C, TIAN K, ZHAO H X. Efficient variable-fidelity models for hierarchical stiffened shells[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 623435 (in Chinese). | |
2 | LéNé F, DUVAUT G, OLIVIER-MAILHé M, et al. An advanced methodology for optimum design of a composite stiffened cylinder[J]. Composite Structures, 2009, 91(4): 392-397. |
3 | 梁鲁. 减振隔振与整星及全箭动态特性相互影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2008: 15-32. |
LIANG L. Mutual influence between performances of vibration attenuation, isolation and characteristic of launch system[D]. Harbin: Harbin Institute of Technology, 2008: 15-32 (in Chinese). | |
4 | 郑晓霞, 李志强, 李文辉, 等. 发动机薄壁尾喷管振动机理分析及结构改进[J]. 太原理工大学学报, 2022, 53(2): 330-337. |
ZHENG X X, LI Z Q, LI W H, et al. Vibration mechanism analysis and structure improvement of engine thin-walled tail nozzle[J]. Journal of Taiyuan University of Technology, 2022, 53(2): 330-337 (in Chinese). | |
5 | 马兴瑞, 于登云, 韩增尧, 等. 星箭力学环境分析与试验技术研究进展[J]. 宇航学报, 2006, 27(3): 323-331. |
MA X R, YU D Y, HAN Z Y, et al. Research evolution on the satellite-rocket mechanical environment analysis & test technology[J]. Journal of Astronautics, 2006, 27(3): 323-331 (in Chinese). | |
6 | 刘小川, 马君峰, 白春玉, 等. 航空结构动力学研究的进展与展望[J]. 应用力学学报, 2022, 39(3): 409-436, 407. |
LIU X C, MA J F, BAI C Y, et al. Progress and prospect of aviation structural dynamics research[J]. Chinese Journal of Applied Mechanics, 2022, 39(3): 409-436, 407 (in Chinese). | |
7 | 李晖, 吕海宇, 邹泽煜, 等. 热环境下纤维增强复合材料圆柱壳非线性振动分析与验证[J]. 航空学报, 2022, 43(9): 425642. |
LI H, LYU H Y, ZOU Z Y, et al. Analysis and verification of nonlinear vibrations of fiber-reinforced composite cylindrical shells in thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 425642 (in Chinese). | |
8 | 孔宪仁, 张也弛. 两自由度非线性吸振器在简谐激励下的振动抑制[J]. 航空学报, 2012, 33(6): 1020-1029. |
KONG X R, ZHANG Y C. Vibration suppression of a two-degree-of-freedom nonlinear energy sink under harmonic excitation[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 1020-1029 (in Chinese). | |
9 | 刘浩, 李晓东, 杨文岐, 等. 高速飞行器翼面结构热振动试验的TARMA模型方法[J]. 航空学报, 2015, 36(7): 2225-2235. |
LIU H, LI X D, YANG W Q, et al. Thermal vibration test on wing structure of high-speed flight vehicle using TARMA model method[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2225-2235 (in Chinese). | |
10 | ZHANG J, CHEN Y, ZHAI J, et al. Topological optimization design on constrained layer damping treatment for vibration suppression of aircraft panel via improved evolutionary structural optimization[J]. Aerospace Science and Technology, 2021, 112: 106619. |
11 | LUO H T, CHEN R, GUO S W, et al. Topology optimization of hard-coating thin plate for maximizing modal loss factors[J]. Coatings, 2021, 11(7): 774. |
12 | LI Z, SU X, TAN J, et al Multi-objective optimization of the layout of damping material for reducing the structure-borne noise of thin-walled structures[J]. Thin-Walled Structures, 2019, 140: 331-341. |
13 | MADEIRA J F A, ARAúJO A L, SOARES C M M, et al. Multiobjective optimization for vibration reduction in composite plate structures using constrained layer damping[J]. Computers & Structures, 2020, 232: 105810. |
14 | XU Z D, HUANG X H, XU F H, et al. Parameters optimization of vibration isolation and mitigation system for precision platforms using non-dominated sorting genetic algorithm[J]. Mechanical Systems and Signal Processing, 2019, 128: 191-201. |
15 | 王文胜. 复杂细长结构动力模型降价及优化研究[D]. 大连: 大连理工大学, 2012: 1-12. |
WANG W S. Study on dynamic model reduction and optimization of complicated slender structures[D]. Dalian: Dalian University of Technology, 2012: 1-12 (in Chinese) . | |
16 | 黄海. 考虑阻尼涂层的结构动力拓扑优化方法研究[D]. 大连: 大连理工大学, 2020: 10-13. |
HUANG H. A study on structural dynamic topology optimization method with damping coating[D]. Dalian: Dalian University of Technology, 2020: 10-13 (in Chinese) . | |
17 | FEENY B F, KAPPAGANTU R. On the physical interpretation of proper orthogonal modes in vibrations[J]. Journal of Sound and Vibration, 1998, 211(4): 607-616. |
18 | 吉洪蕾, 陈仁良, 李攀. 耦合POD重构舰面流场的直升机舰面起降数值模拟[J]. 航空学报, 2016, 37(3): 771-779. |
JI H L, CHEN R L, LI P. Numerical simulation of a helicopter operating in a reconstructed ship airwake based on POD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 771-779 (in Chinese). | |
19 | 邱亚松, 白俊强, 华俊. 基于本征正交分解和代理模型的流场预测方法[J]. 航空学报, 2013, 34(6): 1249-1260. |
QIU Y S, BAI J Q, HUA J. Flow field estimation method based on proper orthogonal decomposition and surrogate model[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1249-1260 (in Chinese). | |
20 | 段焰辉, 蔡晋生, 刘秋洪. 基于代理模型方法的翼型优化设计[J]. 航空学报, 2011, 32(4): 617-627. |
DUAN Y H, CAI J S, LIU Q H. Surrogate model based optimization for airfoil design[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(4): 617-627 (in Chinese). | |
21 | 郑保敬, 梁钰, 高效伟, 等. 功能梯度材料动力学问题的POD模型降阶分析[J]. 力学学报, 2018, 50(4): 787-797. |
ZHENG B J, LIANG Y, GAO X W, et al. Analysis for dynamic response of functionally graded materials using pod based reduced order model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 787-797 (in Chinese). | |
22 | 倪振华, 江棹荣, 谢壮宁. 本征正交分解技术及其在预测屋盖风压场中的应用[J]. 振动工程学报, 2007, 20(1): 1-8. |
NI Z H, JIANG Z R, XIE Z N. POD technique and its application to prediction of wind pressure fields on roof[J]. Journal of Vibration Engineering, 2007, 20(1): 1-8 (in Chinese). | |
23 | BAMER F, BUCHER C. Application of the proper orthogonal decomposition for linear and nonlinear structures under transient excitations[J]. Acta Mechanica, 2012, 223(12): 2549-2563. |
24 | TIAN K, WANG B, ZHOU Y, et al. Proper-orthogonal-decomposition-based buckling analysis and optimization of hybrid fiber composite shells[J]. AIAA Journal, 2018, 56(5): 1723-1730. |
25 | TIAN K, MA X T, LI Z C, et al. A multi-fidelity competitive sampling method for surrogate-based stacking sequence optimization of composite shells with multiple cutouts[J]. International Journal of Solids and Structures, 2020, 193-194: 1-12. |
26 | 田阔. 基于多保真度建模的多层级筒壳屈曲分析及优化方法研究[D]. 大连: 大连理工大学, 2018: 72-91. |
TIAN K. Research on buckling analysis and optimization methods of hierarchical cylindrical shells based on multi-fidelity modeling[D]. Dalian: Dalian University of Technology, 2018: 72-91 (in Chinese). | |
27 | RITTO T G, BUEZAS F S, SAMPAIO R. A new measure of efficiency for model reduction: Application to a vibroimpact system[J]. Journal of Sound and Vibration, 2011, 330(9): 1977-1984. |
28 | LI Y W, TIAN K, HAO P, et al. Optimization design for vibration reduction of complex configuration structures via global reduced-order basis[J]. Engineering Optimization, 2021, 53(10): 1819-1833. |
29 | 余旭东, 赵育善. 飞行器结构动力学[M]. 西安: 西北工业大学出版社, 1998: 181-196. |
YU X D, ZHAO Y S. Aircraft structural dynamics[M]. Xi'an: Northwestern Polytechnical University Press, 1998: 181-196 (in Chinese). | |
30 | 刘海涛. 基于近似模型的工程优化方法中相关问题研究及应用[D]. 大连: 大连理工大学, 2016: 29-61. |
LIU H T. The research and application of metamodel-based engineering optimization[D]. Dalian: Dalian University of Technology, 2016: 29-61 (in Chinese). | |
31 | 王超, 高正红, 张伟, 等. 自适应设计空间扩展的高效代理模型气动优化设计方法[J]. 航空学报, 2018, 39(7): 121745. |
WANG C, GAO Z H, ZHANG W, et al. Efficient surrogate-based aerodynamic design optimization method with adaptive design space expansion[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 121745 (in Chinese). | |
32 | 洪林雄, 李华聪, 彭凯, 等. 基于改进学习策略的Kriging模型结构可靠度算法[J]. 西北工业大学学报, 2020, 38(2): 412-419. |
HONG L X, LI H C, PENG K, et al. Structural reliability algorithms of Kriging model based on improved learning strategy[J]. Journal of Northwestern Polytechnical University, 2020, 38(2): 412-419 (in Chinese). | |
33 | 王红涛, 竺晓程, 杜朝辉. 改进EGO算法在跨声速翼型气动优化设计中的应用[J]. 上海交通大学学报, 2009, 43(11): 1832-1836. |
WANG H T, ZHU X C, DU Z H. Application of the improved EGO algorithm in transonic airfoil aerodynamic optimization design[J]. Journal of Shanghai Jiao Tong University, 2009, 43(11): 1832-1836 (in Chinese). | |
34 | 蒋丽. 基于CFD的中型SUV气动减阻研究[D]. 长春: 吉林大学, 2019: 51-59. |
JIANG L. Research on low aero-drag design of mid-sized SUV on CFD[D]. Changchun: Jilin University, 2019: 51-59 (in Chinese). | |
35 | 刘常春, 吉洪湖, 黄伟, 等. 一种双S弯二元喷管的红外辐射特性数值研究[J]. 航空动力学报, 2013, 28(7): 1482-1488. |
LIU C C, JI H H, HUANG W, et al. Numerical simulation on infrared radiation characteristics of serpentine 2-D nozzle[J]. Journal of Aerospace Power, 2013, 28(7): 1482-1488 (in Chinese). |
/
〈 |
|
〉 |