Articles

Aerodynamic performance optimization design of middle wing section of a special laminar unmanned flight in high-speed cruise

  • TANG Songxiang ,
  • LI Jie ,
  • ZHANG Heng ,
  • NIU Xiaotian
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2021-12-07

  Revised date: 2021-12-11

  Online published: 2022-11-28

Supported by

National Natural Science Foundation of China (11972304)

Abstract

In this paper, the aerodynamic parameters of the middle wing of a special configuration laminar flow in high speed cruise are optimized. The lift and drag are optimized by means of airfoil modification of the middle wing section based on the γ-Reθ transition model. Effects of the middle wing position on transition are researched to provide a basis for improving the cruising torque characteristics of the flight. The applicability of the calculation model is illustrated by comparing the calculation and wind tunnel test results of the original laminar flow airfoil and a traditional airfoil. The original laminar airfoil is modified to improve the lift coefficient at the same attack angle and reduce the cruise attack angle, so as to enlarge the laminar region and improve the laminar characteristics at the condition of high speed cruise. Finally, the aerodynamic calculations of different translation configurations of the middle wing section are conducted. The results show that the laminar region changes little along with the wing section translated. A comparison of the lift and drag coefficients of different translational configurations at the same attack angle shows little effect of configuration on lift and drag, which may provide some insights for torque optimization of the entire aircraft by translating the middle wing section in the future study.

Cite this article

TANG Songxiang , LI Jie , ZHANG Heng , NIU Xiaotian . Aerodynamic performance optimization design of middle wing section of a special laminar unmanned flight in high-speed cruise[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(11) : 526766 -526766 . DOI: 10.7527/S1000-6893.2022.26766

References

[1] 李权, 段卓毅, 张彦军, 等. 民用飞机自然层流机翼研究进展[J]. 航空工程进展, 2013, 4(4):399-406. LI Q, DUAN Z Y, ZHANG Y J, et al. Progress in research on natural laminar wing for civil aircraft[J]. Advances in Aeronautical Science and Engineering, 2013, 4(4):399-406(in Chinese).
[2] CHERNYSHEN S L, KISELEV A P, KURYACHII A P. Laminar flow control research at TsAGI:Past and present[J]. Progress in Aerospace Sciences, 2011, 47(3):169-185.
[3] ZHANG X Y. A review of the attachment line instability for hybrid laminar flow control[J]. Civil Aircraft Design & Research, 2017(4):42-51.
[4] 刘沛清, 马利川, 屈秋林, 等. 低雷诺数下翼型层流分离泡及吹吸气控制数值研究[J]. 空气动力学学报, 2013, 31(4):518-524, 540. LIU P Q, MA L C, QU Q L, et al. Numerical investigation of the laminar separation bubble control by blowing/suction on an airfoil at low Re number[J]. Acta Aerodynamica Sinica, 2013, 31(4):518-524, 540(in Chinese).
[5] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报, 2011, 32(5):765-784. ZHU Z Q, WU Z C, DING J C. Laminar flowcontrol technology and application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):765-784(in Chinese).
[6] RONALD D. Overview of laminar flow control:NASA TP-208705[R]. Washington, D.C.:NASA, 1998.
[7] 王菲, 额日其太, 王强, 等. 基于升华法的后掠翼混合层流控制研究[J]. 实验流体力学, 2010, 24(3):54-58. WANG F,ERIQITAI, WANG Q, et al. Investigation of HLFC on swept wing based on sublimation technique[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3):54-58(in Chinese).
[8] 李悦立, 李栋, 杨永. 后掠翼被动层流控制研究[J]. 力学学报, 2011, 43(1):45-54. LI Y L, LI D, YANG Y. On the passive laminar flow control technique of swept wing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1):45-54(in Chinese).
[9] CHERNYSHEV S L, GAMIRULLIN M D, KHOMICH V Y, et al. Electrogasdynamic laminar flow control on a swept wing[J]. Aerospace Science and Technology, 2016, 59:155-161.
[10] LI F, CHOUDHARI M, CHANG C L, et al. Computational modeling of roughness-based laminar flow control on a subsonic swept wing[J]. AIAA Journal, 2011, 49(3):520-529.
[11] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7):2579-2593.
[12] XU J K, FU Z Y, BAI J Q, et al. Study of boundary layer transition on supercritical natural laminar flow wing at high Reynolds number through wind tunnel experiment[J]. Aerospace Science and Technology, 2018, 80:221-231.
[13] 马晓永, 张彦军, 段卓毅, 等. 自然层流机翼气动外形优化研究[J]. 空气动力学学报, 2015, 33(6):812-817. MA X Y, ZHANG Y J, DUAN Z Y, et al. Study of aerodynamic shape optimization for natural laminar wing[J]. Acta Aerodynamica Sinica, 2015, 33(6):812-817(in Chinese).
[14] CELLA U, QUAGLIARELLA D, DONELLI R, et al. Design and test of the UW-5006 transonic natural-laminar-flow wing[J]. Journal of Aircraft, 2010, 47(3):783-795.
[15] 张彦军, 段卓毅, 雷武涛, 等. 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019, 40(4):122429. ZHANG Y J, DUAN Z Y, LEI W T, et al. Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122429(in Chinese).
[16] 许朕铭, 韩忠华, 陈静, 等. 适用于中程民机的前掠自然层流机翼设计[J]. 西北工业大学学报, 2017, 35(S1):36-42. XU ZM, HAN Z H, CHEN J, et al. Design research of forward swept natural laminar flow wing suitable for medium range civil[J]. Journal of Northwestern Polytechnical University, 2017, 35(S1):36-42(in Chinese).
[17] 王威, 王军, 杨伟刚, 等. 基于熵产方法的跨音速翼型减阻优化设计[J]. 华中科技大学学报(自然科学版), 2018, 46(2):1-6. WANG W, WANG J, YANG W G, et al. Entropy generation method for aerodynamic optimization design of transonic airfoil to drag minimization[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(2):1-6(in Chinese).
[18] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-Part I:Model formulation[J]. Journal of Turbomachinery, 2006, 128(3):413.
[19] LANGTRY R B, MENTER F R, LIKKI S R, et al. A correlation-based transition model using local variables-Part II:Test cases and industrial applications[J]. Journal of Turbomachinery, 2006, 128(3):423-434.
[20] QIAO L, BAI J Q, HUA J, et al. Combination of DES and DDES with a correlation based transition model[J]. Applied Mechanics and Materials, 2013, 444-445:374-379.
[21] ZHOU L, GAO Z H, DU Y M. Flow-dependent DDES/γ-Reθt coupling model for the simulation of separated transitional flow[J]. Aerospace Science and Technology, 2019, 87:389-403.
[22] 易淼荣, 赵慧勇, 乐嘉陵. 基于IDDES方法和γ-Reθ转捩模型的粗糙颗粒诱导高速边界层强制转捩模拟[J]. 推进技术, 2020, 41(4):778-790. YI M R, ZHAO H Y, LE J L. Roughnessinduced high speed boundary layer forced transition simulation using γ-Reθ transition model based on IDDES method[J]. Journal of Propulsion Technology, 2020, 41(4):778-790(in Chinese).
[23] 易淼荣, 赵慧勇, 乐嘉陵, 等. 基于IDDES框架的γ-Reθ转捩模型[J]. 航空学报, 2019, 40(8):122726. YI M R, ZHAO H Y, LE J L, et al.γ-Reθ transition model based on IDDES frame[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):122726(in Chinese).
[24] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[25] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
Outlines

/