Electronics and Electrical Engineering and Control

Accurate and efficient simulation method and experimental verification of monostatic RCS for aeroengine exhaust systems

  • Xinlei CHEN ,
  • Lichang LU ,
  • Honghu JI ,
  • Changqing GU ,
  • Fan GAO ,
  • Xiaojuan SHI
Expand
  • 1.Key Laboratory of Radar Imaging and Microwave Photonics,College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
    2.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
E-mail: chenxl@nuaa.edu.cn

Received date: 2022-06-24

  Revised date: 2022-07-19

  Accepted date: 2022-08-15

  Online published: 2022-11-04

Supported by

National Nature Science Foundation of China(61771238);the Project of Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing University of Aeronautics and Astronautics), Ministry of Education(NJ20220004)

Abstract

Accurate and efficient electromagnetic scattering simulation method is very important for the design of stealthy aeroengine exhaust systems. In this paper, the Characteristic Basis Function Method (CBFM), Multilevel Fast Multipole Algorithm (MLFMA), Interpolation Decomposition (ID) algorithm and parallel technology are combined to simulate the monostatic Radar Cross Section (RCS) of engine exhaust systems. ID can compress the monostatic excitation matrix due to its low rank property, so it can reduce the number of times of solving matrix equations and significantly improve the computational efficiency of the conventional CBFM-MLFMA. To verify the correctness of the algorithm proposed, the axisymmetric exhaust system is machined and its RCS is measured. The simulation results are in good agreement with the measured results, which demonstrates the accuracy of the algorithm.

Cite this article

Xinlei CHEN , Lichang LU , Honghu JI , Changqing GU , Fan GAO , Xiaojuan SHI . Accurate and efficient simulation method and experimental verification of monostatic RCS for aeroengine exhaust systems[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(12) : 327676 -327676 . DOI: 10.7527/S1000-6893.2022.27676

References

1 桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013.
  SANG J H. Low-observable technologies of aircraft[M]. Beijing: Aviation Industry Press, 2013 (in Chinese).
2 吉洪湖. 飞发一体化设计中的发动机隐身问题[J]. 航空动力2018(2): 67-71.
  JI H H. Fundamental issues of aircraft/engine integration for low observability[J]. Aerospace Power2018(2): 67-71 (in Chinese).
3 尚守堂, 曹茂国, 邓洪伟, 等. 航空发动机隐身技术研究及管理工作探讨[J]. 航空发动机201440(2): 6-9, 18.
  SHANG S T, CAO M G, DENG H W, et al. Discuss on aeroengine stealth technology research and management[J]. Aeroengine201440(2): 6-9, 18 (in Chinese).
4 邓洪伟, 尚守堂, 金海, 等. 航空发动机隐身技术分析与论述[J]. 航空科学技术201728(10): 1-7.
  DENG H W, SHANG S T, JIN H, et al. Analysis and discussion on stealth technology of aero engine[J]. Aeronautical Science & Technology201728(10): 1-7 (in Chinese).
5 LING H, CHOU R C, LEE S W. Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity[J]. IEEE Transactions on Antennas and Propagation198937(2): 194-205.
6 杨胜男, 邵万仁, 尚守堂, 等. 单边膨胀球面2元喷管雷达隐身修形研究[J]. 航空发动机201642(5): 55-62.
  YANG S N, SHAO W R, SHANG S T, et al. Study on radar stealth shaping for single expansion ramp with spherical 2-D nozzle[J]. Aeroengine201642(5): 55-62 (in Chinese).
7 姚伦标, 杜凯, 李宁, 等. 火焰稳定器修形对发动机后向RCS的影响[J]. 南京航空航天大学学报202153(4): 570-577.
  YAO L B, DU K, LI N, et al. Influence of flame stabilizer modification on aero-engine backward RCS[J]. Journal of Nanjing University of Aeronautics & Astronautics202153(4): 570-577 (in Chinese).
8 李岳锋, 杨青真, 环夏, 等. 出口宽高比对S形二元收敛喷管雷达散射截面的影响[J]. 航空动力学报201429(3): 645-651.
  LI Y F, YANG Q Z, HUAN X, et al. Influence on radar cross-section of S-shaped two dimensional convergent nozzles with different outlet width-height ratios[J]. Journal of Aerospace Power201429(3): 645-651 (in Chinese).
9 HARRINGTON R F. Field computation by moment methods[M]. New York: Macmillan, 1968
10 GIBSON W C. The method of moments in electromagnetics[M]. Boca Raton: Chapman & Hall, 2007
11 XIANG Z G, CHIA T T. A hybrid BEM/WTM approach for analysis of the EM scattering from large open-ended cavities[J]. IEEE Transactions on Antennas and Propagation200149(2): 165-173.
12 SONG J, LU C C, CHEW W C. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects[J]. IEEE Transactions on Antennas and Propagation199745(10): 1488-1493.
13 LUCENTE E, MONORCHIO A, MITTRA R. An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems[J]. IEEE Transactions on Antennas and Propagation200856(4): 999-1007.
14 CHEN X L, GU C Q, LI Z, et al. Efficient iterative solution of electromagnetic scattering using adaptive cross approximation enhanced characteristic basis function method[J]. IET Microwaves, Antennas & Propagation, 20159(3): 217-223.
15 CHEN X L, GU C Q, DING J, et al. Multilevel fast adaptive cross-approximation algorithm with characteristic basis functions[J]. IEEE Transactions on Antennas and Propagation201563(9): 3994-4002.
16 GARCIA E, DELGADO C, DIEGO I G, et al. An iterative solution for electrically large problems combining the characteristic basis function method and the multilevel fast multipole algorithm[J]. IEEE Transactions on Antennas and Propagation200856(8): 2363-2371.
17 GARCìA E, DELGADO C, LOZANO L, et al. Analysis of the parameters of an approach that combines the characteristic basis function method and the multilevel fast multipole[J]. IET Microwaves, Antennas & Propagation, 20115(4): 419.
18 PAN X M, SHENG X Q. Accurate and efficient evaluation of spatial electromagnetic responses of large scale targets[J]. IEEE Transactions on Antennas and Propagation201462(9): 4746-4753.
19 CHENG H, GIMBUTAS Z, MARTINSSON P G, et al. On the compression of low rank matrices[J]. SIAM Journal on Scientific Computing200526(4): 1389-1404.
20 RAO S, WILTON D, GLISSON A. Electromagnetic scattering by surfaces of arbitrary shape[J]. IEEE Transactions on Antennas and Propagation198230(3): 409-418.
21 ZHAO K Z, VOUVAKIS M N, LEE J F. The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems[J]. IEEE Transactions on Electromagnetic Compatibility200547(4): 763-773.
22 SCHRODER A, BRüNS H D, SCHUSTER C. A hybrid approach for rapid computation of two-dimensional monostatic radar cross section problems with the multilevel fast multipole algorithm[J]. IEEE Transactions on Antennas and Propagation201260(12): 6058-6061.
23 FEI C, CHEN X L, ZHANG Y, et al. A hybrid method to accelerate the calculation of two-dimensional monostatic radar cross section on pec targets[J]. Progress in Electromagnetics Research M201650: 47-54.
Outlines

/