ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Lift enhancement wind tunnel test with flap blowing for large aircraft
Received date: 2022-07-29
Revised date: 2022-09-22
Accepted date: 2022-10-09
Online published: 2022-10-26
The lift of large aircraft can be effectively enhanced with the technology of flap blowing, attracting extensive research and attention in recent years. To improve the take-off and landing performance of a certain type of aircraft, we conduct the flap blowing test in the FL-14 wind tunnel. The two-channel mass flow control unit is used to measure and control the flow of the inboard and outboard flap, and the external air bridge is adopted to eliminate the influence of the air supply pipeline on the force balance measurement. The effect of pressure, temperature and flow rate on the balance load and that of momentum coefficient and flap deflection angle on the lift are studied through the air bridge test and the wind tunnel test, respectively. The surface flow field is visualized with fluorescent tufts. The test results show that the lift increases significantly with flap blowing, and the increment of the lift coefficient increases with the moment coefficient, with the maximum increment being 1.15. The stall angle of attack increases slightly with the momentum coefficient at the flap deflection angle of 30°/ 22.5°. Larger flap deflection angles firstly increase the stall angle of attack and then decrease and finally increase with the increasing momentum coefficient. Lift increment is proportional to the natural logarithm of the momentum coefficient, while both the slope and intercept of the fitting curve increase with the growing flap deflection angle.
Key words: flap blowing; flow control; lift enhancement; wind tunnel test; large aircraft
Wanbo WANG , Yubiao JIANG , Yong HUANG , Xin ZHANG , Ran WEI . Lift enhancement wind tunnel test with flap blowing for large aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(13) : 0 -127870- . DOI: 10.7527/S1000-6893.2022.27870
1 | VAN DAM C P. The aerodynamic design of multi-element high-lift systems for transport airplanes[J]. Progress in Aerospace Sciences, 2002, 38(2): 101-144. |
2 | GARNER P, MEREDITH P, STONER R. Areas for future CFD development as illustrated by transport aircraft applications[C]∥10th Computational Fluid Dynamics Conference. Reston: AIAA, 1991. |
3 | RUDOLPH P K C. High-lift systems on commercial subsonic airliners[M]. Moffett Field: National Aeronautics and Space Administration, Ames Research Center, 1996. |
4 | HARTWICH P M, CAMACHO P, EL-GOHARY K, et al. System-level trade studies for transonic transports with active flow control (AFC) enhanced high-lift systems[C]∥55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017. |
5 | CLEAN J D, CROUCH J D, STONER R C, et al. Study of the application of separation control by unsteady excitation to civil transport aircraft: Technical Report CR-1999-209338[R]. Washington D. C.: NASA, 1999. |
6 | BIELER H. Active flow control concepts and application opportunities[J]. Aircraft Engineering and Aerospace Technology, 2017, 89(5): 725-729. |
7 | 戴思宗, 董建鸿. 外吹式动力增升技术在大型运输机上的应用研究[J]. 航空科学技术, 2006, 17(2): 33-38. |
DAI S Z, DONG J H. A study of externally blowing powered lift technique for application to large transport[J]. Aeronautical Science and Technology, 2006, 17(2): 33-38 (in Chinese). | |
8 | SHMILOVICH A, YADLIN Y, DICKEY E D, et al. Development of an active flow control technique for an airplane high-lift configuration[C]∥55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017. |
9 | JAMESON K, MARSHALL D D, EHRMANN R, et al. Cal poly’s AMELIA 10 foot span hybrid wing-body low noise CESTOL aircraft wing tunnel test and experimental results overview: AIAA-2013-0974[R]. Reston: AIAA, 2013. |
10 | 孙卫平, 杨康智, 秦何军. 大型水陆两栖飞机吹气襟翼设计与分析验证[J]. 航空动力学报, 2016, 31(4): 903-909. |
SUN W P, YANG K Z, QIN H J. Design and test of a jet flap for a large amphibian[J]. Journal of Aerospace Power, 2016, 31(4): 903-909 (in Chinese). | |
11 | 王妙香, 孙卫平, 秦何军. 水陆两栖飞机内吹式襟翼优化设计[J]. 航空学报, 2016, 37(1): 300-309. |
WANG M X, SUN W P, QIN H J. Optimization design of an internal blown flap used in large amphibian[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 300-309 (in Chinese). | |
12 | SHWEYK K M, HYDE D. Overview of aerodynamic model and flight control system of a speed agile concept demonstrator: AIAA-2013-1101[R]. Reston: AIAA, 2013. |
13 | COLLINS S W, WESTRA B W, LIN J C, et al. Wind tunnel testing of powered lift, all-wing STOL model[J]. The Aeronautical Journal, 2009, 113(1140): 129-137. |
14 | LIN J C, JONES G S, ALLAN BG, et al. Flow-field measurement of a hybrid wing body model with blown flaps: AIAA-2008-6718[R]. Reston: AIAA, 2008. |
LIN J, JONES G, ALLEN B, et al. Flow-field measurement of a hybrid wing body model with blown flaps[C]∥ 26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008. | |
15 | LIN J C, ANDINO M Y, ALEXANDER M G, et al. An overview of active flow control enhanced vertical tail technology development[C]∥54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
16 | GRATZER L B, O'DONNELL T J. Development of a BLC high-lift system for high-speed airplanes[J]. Journal of Aircraft, 1965, 2(6): 477-484. |
17 | ShinMaywa[EB/OL]. [2023-04-17]. . |
18 | BRUNET V, DANDOIS J, VERBEKE C. Recent onera flow control research on high-lift configurations[J]. Journal of Aerospace Lab, 2013(6): AL06-05. |
19 | THIEDE P. EUROLIFT—advanced high lift aerodynamics for transport aircraft[J]. Air & Space Europe, 2001, 3(3-4): 105-108. |
20 | SMITH D, DICKEY E, VONKLEIN T. The ADVINT program[C]∥3rd AIAA Flow Control Conference. Reston: AIAA, 2006. |
21 | RUDNIK R, GEYR H. The European high lift project EUROLIFT II-objectives, approach, and structure[C]∥ 25th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2007. |
22 | FOLLEN G J, DEL ROSARIO R, WAHLS R, et al. NASA’s fundamental aeronautics subsonic fixed wing project: Generation N+3 technology portfolio[C]∥Aerospace Technology Conference and Exposition. Warrendale: SAE, 2011. |
23 | LI T, LI Y L, DANG T H. Flow control on high-lift devices of civil aircraft[J]. Technology Research,2013, 4(111): 11-28. |
24 | 周涛, 李亚林, 党铁红. 民用飞机增升装置中的流动控制技术[J]. 民用飞机设计与研究, 2013(4): 17-24, 28. |
ZHOU T, LI Y L, DANG T H. Flow control on high-lift devices of civil aircraft[J]. Civil Aircraft Design & Research, 2013(4): 17-24, 28 (in Chinese). | |
25 | 朱自强, 吴宗成. 环量控制技术研究[J]. 航空学报, 2016, 37(2): 411-428. |
ZHU Z Q, WU Z C. Study of the circulation control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 411-428 (in Chinese). | |
26 | 刘志勇, 罗振兵, 袁先旭, 等. 周期性激励控制翼型流动分离研究综述[J]. 力学进展, 2020, 50(1): 202007. |
LIU Z Y, LUO Z B, YUAN X X, et al. Review of controlling flow separation over airfoils with periodic excitation[J]. Advances in Mechanics, 2020, 50(1): 202007 (in Chinese). | |
27 | 王万波, 姜裕标, 黄勇, 等. 脉冲吹气对无缝襟翼翼型气动性能的影响[J]. 航空学报, 2018, 39(11): 122129. |
WANG W B, JIANG Y B, HUANG Y, et al. Influence of pulse blowing on slotless flap airfoil aerodynamic characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 122129 (in Chinese). | |
28 | 佟增军, 刘沛清, 段会申. 襟翼吹吸气控制技术在二维多段翼型中应用的数值模拟[J]. 飞机设计, 2010, 30(4): 10-15. |
TONG Z J, LIU P Q, DUAN H S. Numerical simulation of the flap blowing and suction control for two dimension multi-element airfoil[J]. Aircraft Design, 2010, 30(4): 10-15 (in Chinese). | |
29 | 焦予秦, 陆岩. 多段翼型吹气流动分离控制研究[J]. 应用力学学报, 2015, 32(2): 215-220, 350. |
JIAO Y Q, LU Y. Research on flow separation control on multi-element airfoil using air-blowing[J]. Chinese Journal of Applied Mechanics, 2015, 32(2): 215-220, 350 (in Chinese). | |
30 | 刘睿, 白俊强, 邱亚松, 等. 内吹式襟翼几何参数影响研究与优化设计[J]. 西北工业大学学报, 2020, 38(1): 58-67. |
LIU R, BAI J Q, QIU Y S, et al. Effects of geometrical parameters of internal blown flap and its optimal design[J]. Journal of Northwestern Polytechnical University, 2020, 38(1): 58-67 (in Chinese). | |
31 | WANG Y K, ZHOU P, YANG J J. Parameters effect of pulsed-blowing over control surface[J]. Aerospace Science and Technology, 2016, 58: 103-115. |
32 | 姜裕标, 王万波, 常智强, 等. 定常吹气对无缝襟翼翼型地面效应影响的数值模拟[J]. 航空学报, 2017, 38(6): 120751. |
JIANG Y B, WANG W B, CHANG Z Q, et al. Numerical simulation of effect of steady blowing slot-less flap airfoil in ground effect[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120751 (in Chinese). | |
33 | 姜裕标, 王万波, 赵光银, 等. 地面效应对射流增升翼型性能影响实验研究[J]. 空气动力学学报, 2020, 38(5): 887-895. |
JIANG Y B, WANG W B, ZHAO G Y, et al. Experimental investigation on blowing control airfoil influenced by ground effect[J]. Acta Aerodynamica Sinica, 2020, 38(5): 887-895 (in Chinese). | |
34 | 赵光银, 姜裕标, 王万波, 等. 螺旋桨滑流对简单襟翼吹气控制的影响[J]. 航空动力学报, 2021, 36(3): 530-542. |
ZHAO G Y, JIANG Y B, WANG W B, et al. Effect of propeller slipstream on blowing control of simple flap[J]. Journal of Aerospace Power, 2021, 36(3): 530-542 (in Chinese). | |
35 | 郝璇, 刘芳, 王斌. 基于襟/缝翼吹气技术的短距起降飞行器增升策略的数值模拟研究[J]. 航空工程进展, 2016, 7(4): 408-419. |
HAO X, LIU F, WANG B. The numerical simulation research on high lift enhancement strategies of STOL aircraft based on flap and slat blowing[J]. Advances in Aeronautical Science and Engineering, 2016, 7(4): 408-419 (in Chinese). | |
36 | 朱晓军, 李锋, 欧东斌, 等. 喷流流动控制增升效应数值模拟[J]. 空气动力学学报, 2020, 38(1): 66-72. |
ZHU X J, LI F, OU D B, et al. Numerical simulation of flow control in lift-increase effect using air-blowing[J]. Acta Aerodynamica Sinica, 2020, 38(1): 66-72 (in Chinese). | |
37 | KOOI J W. Engine simulation with turbofan powered simulators in the German-Dutch wind tunnels: AIAA-2002-2919[R]. Reston: AIAA, 2002. |
38 | 章荣平, 王勋年, 黄勇. 发动机动力模拟风洞试验中的空气桥技术[J]. 航空动力学报, 2015, 30(4): 910-915. |
ZHANG R P, WANG X N, HUANG Y. Air bridge technology for engine power simulation test in wind tunnel[J]. Journal of Aerospace Power, 2015, 30(4): 910-915 (in Chinese). | |
39 | 章荣平, 王勋年, 黄勇, 等. 低速风洞全模TPS试验空气桥的设计与优化[J]. 实验流体力学, 2012, 26(6): 48-52. |
ZHANG R P, WANG X N, HUANG Y, et al. Design and optimization of the air bridge for low speed full-span TPS test[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6): 48-52 (in Chinese). | |
40 | 胡卜元, 黄勇, 章贵川, 等. 低速TPS试验内式流量控制技术研究[J]. 实验流体力学, 2019, 33(6): 54-58. |
HU B Y, HUANG Y, ZHANG G C, et al. Internal mass flow control technology of low speed TPS tests[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 54-58 (in Chinese). | |
41 | 胡卜元, 黄勇, 章荣平, 等. 涡扇动力模拟短舱反推力校准试验技术[J]. 航空动力学报, 2019, 34(9): 2056-2062. |
HU B Y, HUANG Y, ZHANG R P, et al. Reverse thrust calibration test technology of turbofan nacelle simulator[J]. Journal of Aerospace Power, 2019, 34(9): 2056-2062 (in Chinese). | |
42 | PFINGSTEN K C, RADESPIEL R. Experimental and numerical investigation of a circulation control airfoil[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009: 533. |
43 | QIU Y S, BAI J Q, QIAO L. Aerodynamic effects of wing-mounted engine nacelle on high-lift configuration of turboprop airliner[J]. Journal of Aircraft, 2018, 55(3): 1082-1089. |
/
〈 |
|
〉 |