Reviews

Overview of X-ray pulsar-based navigation methods

  • Wei ZHENG ,
  • Yusong WANG ,
  • Kun JIANG ,
  • Yidi WANG
Expand
  • 1.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
    2.Beijing Institute of Tracking and Communication Technology,Beijing 100094,China

Received date: 2022-05-16

  Revised date: 2022-06-13

  Accepted date: 2022-08-08

  Online published: 2022-10-26

Supported by

National Natural Science Foundation of China(61703413)

Abstract

Being a novel and potential spacecraft autonomous navigation technology, X-ray pulsar-based navigation technology has irreplaceable advantages in deep space exploration, time reference autonomous maintenance. Firstly, this paper briefly introduces the background and significance of X-ray pulsar-based navigation. Secondly, the research progress of two key technologies of X-ray pulsar-based navigation, pulsar signal processing technology and pulsar navigation theory, is introduced. Thirdly, the research progress of applications of X-ray pulsar-based navigation is summarized. Finally, the development trend of X-ray pulsar navigation technology is presented and the future development are prospected.

Cite this article

Wei ZHENG , Yusong WANG , Kun JIANG , Yidi WANG . Overview of X-ray pulsar-based navigation methods[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(3) : 527451 -527451 . DOI: 10.7527/S1000-6893.2022.27451

References

1 LYNE A G, GRAHAM-SMITH F. Pulsar astronomy[M]. 4th ed. Cambridge: Cambridge University Press, 2012.
2 SHEIKH S I. The use of variable celestial X-Ray sources for spacecraft navigation [D]. Maryland: University of Maryland, 2005.
3 朱慈墭. 天文学教程[M]. 北京: 高等教育出版社, 2003.
  ZHU C S. Astronomy course[M]. Beijing: Higher Education Press, 2003 (in Chinese).
4 DENEVA J S, RAY P S, LOMMEN A, et al. High-precision X-ray timing of three millisecond pulsars with NICER: stability estimates and comparison with radio[J]. The Astrophysical Journal Letters2019874(2): 160.
5 ZHENG W, WANG Y D. X-ray pulsar-based navigation: Theory and applications[M]. Singapore: Springer Singapore, 2020.
6 WINTERNITZ L B, HASSOUNEH M A, MITCHELL J W, et al. SEXTANT X-ray pulsar navigation demonstration: additional on-orbit results[C]∥ 2018 SpaceOps Conference. Reston: AIAA, 2018: 2538.
7 郑世界, 葛明玉, 韩大炜, 等. 基于天宫二号POLAR的脉冲星导航实验[J]. 中国科学: 物理学 力学 天文学201747(9): 120-128.
  ZHENG S J, GE M Y, HAN D W, et al. Test of pulsar navigation with POLAR on TG-2 space station[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 201747(9): 120-128 (in Chinese).
8 ZHENG S J, ZHANG S N, LU F J, et al. In-orbit demonstration of X-ray pulsar navigation with the Insight-HXMT satellite[J]. Astrophysical Journal Supplement Series2019244(1):1-18.
9 丁陶伟, 帅平, 黄良伟, 等. 基于扩展卡尔曼滤波的XPNAV-1卫星自主定轨算法研究[J]. 中国空间科学技术202141(1): 13-21.
  DING T W, SHUAI P, HUANG L W, et al. An autonomous orbit determination algorithm of XPNAV-1 based on extended Kalman filtering[J]. Chinese Space Science and Technology202141(1): 13-21 (in Chinese).
10 张大鹏, 王奕迪, 姜坤, 等. XPNAV-1卫星实测数据 处理与分析[J]. 宇航学报201839(4): 411-417.
  ZHANG D P, WANG Y D, JIANG K, et al. Measured data processing and analysis for XPNAV-1[J]. Journal of Astronautics201839(4): 411-417 (in Chinese).
11 姜坤, 焦文海, 郝晓龙, 等. 脉冲星试验01星科学试验与成果[J/OL]. 航空学报, [2022-06-06]..
  JIANG K, JIAO W H, HAO X L, et al. Scientific experiments and achievements of XPNAV-1 [J/OL]. Acta Aeronautica et Astronautica Sinica, [2022-06-06]. (in Chinese).
12 李连升, 梅志武, 吕政欣, 等. X射线脉冲星导航探测技术发展综述[J]. 兵器装备工程学报201738(5): 1-9.
  LI L S, MEI Z W, LYU Z X, et al. Overview of the development of X-ray pulsar navigation detection technology[J]. Journal of Ordnance Equipment Engineering201738(5): 1-9 (in Chinese).
13 EMADZADEH A A, SPEYER J L. On modeling and pulse phase estimation of X-ray pulsars[J]. IEEE Transactions on Signal Processing201058(9): 4484-4495.
14 WINTERNITZ L M B, HASSOUNEH M A, MITCHELL J W, et al. X-ray pulsar navigation algorithms and testbed for SEXTANT[C]∥ 2015 IEEE Aerospace Conference. Piscataway: IEEE Press, 2015: 1-14.
15 王奕迪. 深空探测中的X射线脉冲星导航方法研究[D]. 长沙: 国防科学技术大学, 2011.
  WANG Y D. Research on the X-ray pulsar-based navigation in deep space exploration[D]. Changsha: National University of Defense Technology, 2011 (in Chinese).
16 LOMB N R. Least-squares frequency analysis of unequally spaced data[J]. Astrophysics and Space Science197639(2): 447-462.
17 SCARGLE J D. Studies in astronomical time series analysis. Ⅱ-Statistical aspects of spectral analysis of unevenly spaced data[J]. The Astrophysical Journal Letters1982263: 835.
18 SCHWARZENBERG-CZERNY A. On the advantage of using analysis of variance for period search[J]. Monthly Notices of the Royal Astronomical Society1989241(2): 153-165.
19 DWORETSKY M M. A period-finding method for sparse randomly spaced observations or “How long is a piece of string?”[J]. Monthly Notices of the Royal Astronomical Society1983203(4): 917-924.
20 CLARKE D. String/Rope length methods using the Lafler-Kinman statistic[J]. Astronomy & Astrophysics2002386(2): 763-774.
21 MAYO W T Jr. Spectrum measurements with laser velocimeters[M]∥ Proceedings of the Dynamic Flow Conference 1978 on Dynamic Measurements in Unsteady Flows. Dordrecht: Springer Netherlands, 1978: 851-868.
22 EDELSON R A, KROLIK J H. The discrete correlation function - A new method for analyzing unevenly sampled variability data[J]. The Astrophysical Journal Letters1988333: 646.
23 HUIJSE P, ESTEVEZ P A, PROTOPAPAS P, et al. An information theoretic algorithm for finding periodicities in stellar light curves[J]. IEEE Transactions on Signal Processing201260(10): 5135-5145.
24 周庆勇, 姬剑锋, 任红飞. 非等间隔计时数据的X射线脉冲星周期快速搜索算法[J]. 物理学报201362(1): 019701.
  ZHOU Q Y, JI J F, REN H F. Quick search algorithm of X-ray pulsar period based on unevenly spaced timing data[J]. Acta Physica Sinica201362(1): 019701 (in Chinese).
25 李建勋, 柯熙政, 赵宝升. 一种脉冲星周期的时域估计新方法[J]. 物理学报201261(6): 069701.
  LI J X, KE X Z, ZHAO B S. A new time-domain estimation method for period of pulsars[J]. Acta Physica Sinica201261(6): 069701 (in Chinese).
26 张华, 许录平. 脉冲星脉冲轮廓累积的最小熵方法[J]. 物理学报201160(3): 039701.
  ZHANG H, XU L P. Minimum entropy cumulation method of pulsar profile[J]. Acta Physica Sinica201160(3): 039701 (in Chinese).
27 张新源, 帅平, 黄良伟. 脉冲星导航轮廓折叠失真与周期估计算法[J]. 宇航学报201536(9): 1056-1060.
  ZHANG X Y, SHUAI P, HUANG L W. Profile folding distortion and period estimation for pulsar navigation[J]. Journal of Astronautics201536(9): 1056-1060 (in Chinese).
28 宋佳凝. X射线脉冲星信号处理与导航定位方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
  SONG J N. Research on X-ray pulsar-based navigation methods and signal processing algorithms[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese).
29 LIU J, YANG Z H, KANG Z W, et al. Fast CS-based pulsar period estimation method without tentative epoch folding and its CRLB[J]. Acta Astronautica2019160: 90-100.
30 刘劲, 韩雪侠, 宁晓琳, 等. 基于EMD-CS的脉冲星周期超快速估计[J]. 航空学报202041(8): 623486.
  LIU J, HAN X X, NING X L, et al. Ultra-fast estimation of pulsar period based on EMD-CS[J]. Acta Aeronautica et Astronautica Sinica202041(8): 623486 (in Chinese).
31 EMADZADEH A A, SPEYER J L. X-ray pulsar-based relative navigation using epoch folding[J]. IEEE Transactions on Aerospace and Electronic Systems201147(4): 2317-2328.
32 ZHANG H, XU L P, SHEN Y H, et al. A new maximum-likelihood phase estimation method for X-ray pulsar signals[J]. Journal of Zhejiang University SCIENCE C201415(6): 458-469.
33 王文波, 张晓东, 汪祥莉. 脉冲星信号的经验模态分解模态单元比例萎缩消噪算法[J]. 物理学报201362(6): 069701.
  WANG W B, ZHANG X D, WANG X L. Pulsar signal denoising method based on empirical mode decomposition mode cell proportion shrinking[J]. Acta Physica Sinica201362(6): 069701 (in Chinese).
34 高国荣, 刘艳萍, 潘琼. 基于小波域可导阈值函数与自适应阈值的脉冲星信号消噪[J]. 物理学报201261(13): 139701.
  GAO G R, LIU Y P, PAN Q. A differentiable thresholding function and an adaptive threshold selection technique for pulsar signal denoising[J]. Acta Physica Sinica201261(13): 139701 (in Chinese).
35 高迎东, 王宏力, 由四海, 等. 基于双参数阈值函数和多层阈值的X射线脉冲星信号消噪[J]. 光学学报201939(12): 18-27.
  GAO Y D, WANG H L, YOU S H, et al. X-ray pulsar signal denoising based on two-parameter threshold function and multi-layer threshold[J]. Acta Optica Sinica201939(12): 18-27 (in Chinese).
36 高迎东, 王宏力, 由四海, 等. 基于小波基函数选取与改进阈值函数的脉冲星信号去噪算法研究[J]. 电光与控制202027(4): 15-19.
  GAO Y D, WANG H L, YOU S H, et al. A pulsar signal denoising algorithm based on wavelet basis function selection and improved threshold function[J]. Electronics Optics & Control202027(4): 15-19 (in Chinese).
37 WANG Y D, ZHENG W, ZHANG D P, et al. Pulsar profile denoising using kernel regression based on maximum correntropy criterion[J]. Optik2017130: 757-764.
38 EMADZADEH A. Relative navigation between two spacecraft using X-Ray pulsars [D]. California: University of California, 2009.
39 SU J Y, FANG H Y, BAO W M, et al. A maximum a posteriori estimation based method for estimating pulse time delay[J]. Advances in Space Research202269(11): 3966-3982.
40 GOLSHAN A, SHEIKH S. On pulse phase estimation and tracking of variable celestial X-ray sources[C]∥ 63rd Annual Meeting of the Institute of Navigation, Cambridge, 2007: 410–412.
41 HUANG L W, LIANG B, ZHANG T. Pulse phase and Doppler frequency estimation of X-ray pulsars under conditions of spacecraft and binary motion and its application in navigation[J]. Science China Physics, Mechanics and Astronomy201356(4): 848-858.
42 WANG Y D, ZHENG W. Pulse phase estimation of X-ray pulsar with the aid of vehicle orbital dynamics[J]. Journal of Navigation201669(2): 414-432.
43 WANG Y D, ZHANG W. Pulsar phase and Doppler frequency estimation for XNAV using on-orbit epoch folding[J]. IEEE Transactions on Aerospace and Electronic Systems201652(5): 2210-2219.
44 张大鹏, 李治泽, 王奕迪, 等. X射线脉冲星动态信号处理方法研究[J]. 深空探测学报20196(4): 335-340.
  ZHANG D P, LI Z Z, WANG Y D, et al. Dynamic data processing for X-ray pulsar signal[J]. Journal of Deep Space Exploration20196(4): 335-340 (in Chinese).
45 WANG Y S, WANG Y D, ZHENG W. On-orbit pulse phase estimation based on CE-Adam algorithm[J]. Aerospace20218(4): 95.
46 REICHLEY P, DOWNS G, MORRIS G. Use of pulsar signals as clock [J]. NASA Jet Propulsion Laboratory Quarterly Technical Review19711(2):80-86.
47 DOWNS G. Interplanetary navigation using pulsating radio sources[R]. Washingtion: NASA, 1974.
48 CHESTER T, BUTMAN S. Navigation using X-ray pulsars[R]. Washingtion: NASA, 1981.
49 WOOD K S. Navigation studies utilizing the NRL-801 experiment and the ARGOS satellite[C]∥ Optical Engineering and Photonics in Aerospace Sensing. Proc SPIE 1940Small Satellite Technology and Applications III, 1940: 105-116.
50 SALA J, URRUELA A, VILLARES X, et al. Feasibility study for a spacecraft navigation system relying on pulsar timing information [R]. 2004.
51 GRAVEN P, COLLINS J, SHEIKH S, et al. XNAV beyond the moon[C]∥ Proceedings of the Annual Meeting - Institute of Navigation, 2007: 423-431.
52 孙守明, 郑伟, 汤国建. 利用X射线脉冲星进行同步定位/授时的可观性分析[J]. 武汉大学学报·信息科学版201136(9): 1068-1072.
  SUN S M, ZHENG W, TANG G J. Observability analysis of synchronous location and timing with X-ray pulsars[J]. Geomatics and Information Science of Wuhan University201136(9): 1068-1072 (in Chinese).
53 LIU J, MA J, TIAN J W, et al. X-ray pulsar navigation method for spacecraft with pulsar direction error[J]. Advances in Space Research201046(11): 1409-1417.
54 WANG Y D, ZHENG W, SUN S M, et al. X-ray pulsar-based navigation system with the errors in the planetary ephemerides for Earth-orbiting satellite[J]. Advances in Space Research201351(12): 2394-2404.
55 王璐, 史晨曦, 李建勋, 等. 修正钟差和方位误差的X射线脉冲星导航[J]. 计算机测量与控制201826(8): 205-207, 242.
  WANG L, SHI C X, LI J X, et al. X-ray pulsar navigation to correct for clock errors and direction errors[J]. Computer Measurement & Control201826(8): 205-207, 242 (in Chinese).
56 武瑾媛, 房建成, 杨照华. 基于扩维卡尔曼滤波的火星探测器脉冲星相对导航方法[J]. 仪器仪表学报201334(8): 1711-1716.
  WU J Y, FANG J C, YANG Z H. ASUKF based relative navigation method for Mars probe using pulsar[J]. Chinese Journal of Scientific Instrument201334(8): 1711-1716 (in Chinese).
57 WANG Y D, ZHENG W, SUN S M, et al. X-ray pulsar-based navigation using time-differenced measurement[J]. Aerospace Science and Technology201436: 27-35.
58 郑伟, 王奕迪, 张大鹏. 单探测器脉冲星导航系统误差补偿方法研究[C]∥ 2017中国自动化大会(CAC2017)暨国际智能制造创新大会(CIMIC2017)论文集, 2017: 336-343.
  ZHENG W, WANG Y D, ZHANG D P. Systematic biases compensation for X-ray pulsar-based navigation system using one sensor [C]∥ 2017 Chinese Automation Congress, 2017:336-343 (in Chinese).
59 宁晓琳, 桂明臻, 黄月清, 等. 基于TOA和TDTOA的增广状态脉冲星组合导航误差抑制方法[J]. 中国科学: 信息科学202151(6): 971-984.
  NING X L, GUI M Z, HUANG Y Q, et al. TOA and TDTOA-based augmented state pulsar integrated navigation error suppression method[J]. Ssientia Sinica Informationis202151(6): 971-984 (in Chinese).
60 褚永辉, 李茂登, 黄翔宇, 等. 基于自适应滤波的脉冲星导航方法研究[J]. 空间控制技术与应用201541(6): 8-12.
  CHU Y H, LI M D, HUANG X Y, et al. Adaptive filter of X-ray pulsar-based navigation[J]. Aerospace Control and Application201541(6): 8-12 (in Chinese).
61 李敏, 张迎春, 耿云海, 等. 鲁棒EKF在脉冲星导航系统中的应用[J]. 航空学报201637(4): 1305-1315.
  LI M, ZHANG Y C, GENG Y H, et al. A robust extended Kalman filter algorithm for X-ray pulsar navigation system[J]. Acta Aeronautica et Astronautica Sinica201637(4): 1305-1315 (in Chinese).
62 姜宇, 李晓宇, 金晶. 脉冲星导航系统观测量异常的改进UKF滤波算法研究[J]. 上海航天201734(5): 23-29.
  JIANG Y, LI X Y, JIN J. Modified unscented Kalman filter algorithm for XNAV with abnormal measurement[J]. Aerospace Shanghai201734(5): 23-29 (in Chinese).
63 胡腾戈, 武迪. 基于记忆衰减滤波的X射线脉冲星自主导航[J]. 力学与实践201941(4): 382-387.
  HU T G, WU D. Autonomous navigation of probe by X-ray pulsars based on fading memory filtering[J]. Mechanics in Engineering201941(4): 382-387 (in Chinese).
64 魏二虎, 张帅, Wei Jianan. 自适应滤波在环火探测器脉冲星自主导航中的应用[J]. 武汉大学学报·信息科学版201540(5): 701-705.
  WEI E H, ZHANG S, WEI J N. Autonomous navigation of Mars probe using X-ray pulsar based on a modified AEKF[J]. Geomatics and Information Science of Wuhan University201540(5): 701-705 (in Chinese).
65 熊凯, 魏春岭, 李连升, 等. 基于扩维QLEKF的脉冲星/星间定向组合导航[J/OL].航空学报,[2022-01-11]..
  XIONG K, WEI C L, LI L S, et al. Pulsar/inter-satellite LOS integrated navigation based on augmented QLEKF [J/OL]. Acta Aeronautica et Astronautica Sinica,[2022-01-11] (in Chinese).
66 张大鹏, 呼延宗泊, 李恒年. 基于卫星实测数据的X射线脉冲星导航体制验证[J/OL]. 航空学报,[2022-01-11]..
  ZHANG D P, HUYAN Z P, LI H N. X-ray pulsar-based navigation results based on measured data [J/OL]. Acta Aeronautica et Astronautica Sinica,[2022-01-11]. (in Chinese).
67 XIONG K, WEI C L, LIU L D. Robust Kalman filtering for discrete-time nonlinear systems with parameter uncertainties[J]. Aerospace Science and Technology201218(1): 15-24.
68 WANG Y D, ZHENG W, SUN S M, et al. Robust information filter based on maximum correntropy criterion[J]. Journal of Guidance, Control, and Dynamics201639(5): 1126-1131.
69 WANG Y D, ZHENG W, AN X Y, et al. XNAV/CNS integrated navigation based on improved kinematic and static filter[J]. Journal of Navigation201366(6): 899-918.
70 许强, 崔洪亮, 丁邦平,等. 考虑有色噪声影响的脉冲星导航两级强跟踪差分滤波器[J/OL]. 航空学报,[2022-01-11]..
  XU Q, CUI H L, DING B P, et.al. Two-stage strong tracking differential Kalman filter for X-ray pulsar navigation with coloured noise [J/OL] . Acta Aeronautica et Astronautica Sinica,[2022-01-11]. (in Chinese).
71 孙守明, 郑伟, 汤国建. X射线脉冲星/SINS组合导航研究[J]. 空间科学学报201030(6): 579-583.
  SUN S M, ZHENG W, TANG G J. Research on X-ray pulsars/SINS integrated navigation[J]. Chinese Journal of Space Science201030(6): 579-583 (in Chinese).
72 孙守明, 郑伟, 汤国建. X射线脉冲星/SINS组合导航中的钟差修正方法研究[J]. 国防科技大学学报201032(6): 82-86.
  SUN S M, ZHENG W, TANG G J. A new clock error control algorithm of X-ray pulsars/SINS integrated navigation[J]. Journal of National University of Defense Technology201032(6): 82-86 (in Chinese).
73 LIU J, MA J, TIAN J W. Pulsar/CNS integrated navigation based on federated UKF[J]. Journal of Systems Engineering and Electronics201021(4): 675-681.
74 刘劲, 马杰, 田金文. 利用X射线脉冲星和多普勒频移的组合导航[J]. 宇航学报201031(6): 1552-1557.
  LIU J, MA J, TIAN J W. Integrated X-ray pulsar and Doppler shift navigation[J]. Journal of Astronautics201031(6): 1552-1557 (in Chinese).
75 LI J N, LI Y, LIN H M, et al. Autonomous integrated navigation for Jupiter probe transfer phase based on optical/pulsar[J]. Aerospace Shanghai (Chinese & English)202037(4): 1-9.
76 杨博, 胡声曼, 孙晖, 等. 基于虚拟观测值的X射线单脉冲星星光组合导航[J]. 北京航空航天大学学报201642(6): 1107-1115.
  YANG B, HU S M, SUN H, et al. Integrated single X-ray pulsar and starlight navigation based on virtual observation value[J]. Journal of Beijing University of Aeronautics and Astronautics201642(6): 1107-1115 (in Chinese).
77 喻子原, 刘劲, 宁晓琳, 等. 面向编队飞行的天文多普勒差分/脉冲星组合导航[J]. 深空探测学报20185(3): 212-218.
  YU Z Y, LIU J, NING X L, et al. Celestial Doppler difference/pulsar for formation flying and its integrated navigation[J]. Journal of Deep Space Exploration20185(3): 212-218 (in Chinese).
78 WANG Y D, ZHENG W, SUN S M. X-ray pulsar-based navigation system/Sun measurement integrated navigation method for deep space explorer[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2015229(10): 1843-1852.
79 WANG Y D, SUN J F, ZHENG W. Interstellar autonomous navigation system using X-ray pulsar and stellar angle measurement[J]. Applied Mechanics and Materials2012249-250: 231-240.
80 王宏力, 许强, 何星, 等. 基于强跟踪滤波的单脉冲星/惯性/星光组合导航算法[J]. 兵器装备工程学报201839(12): 101-105.
  WANG H L, XU Q, HE X, et al. Single pulsar/inertial/starlight integrated navigation algorithm based on suboptimal fading extended Kalman filter[J]. Journal of Ordnance Equipment Engineering201839(12): 101-105 (in Chinese).
81 WANG Y D, ZHENG W, SUN S M, et al. Autonomous navigation method for low-thrust interplanetary vehicles[J]. Journal of Aerospace Engineering201629(1): 1-9.
82 WANG Y D, ZHENG W, ZHANG D P. X-ray pulsar/starlight Doppler deeply-integrated navigation method[J]. Journal of Navigation201770(4): 829-846.
83 WANG Y S, WANG Y D, ZHENG W, et al. Stellar angle-aided pulse phase estimation and its navigation application[J]. Aerospace20218(9): 240.
84 LIU J, NING X L, MA X, et al. Direction/distance/velocity measurements deeply integrated navigation for Venus capture period[J]. Journal of Navigation201871(4): 861-877.
85 WORDFORK D. Use of X-Ray pulsar for aiding GPS satellite orbit determination [D]. 2005.
86 XIONG K, WEI C L, LIU L D. The use of X-ray pulsars for aiding navigation of satellites in constellations[J]. Acta Astronautica200964(4): 427-436.
87 LIU L, ZHENG W, TANG G J. Autonomous positioning of satellite constellations via X-ray pulsar measurements[J]. Journal of Navigation201366(5): 671-682.
88 SUN H F, SU J Y, DENG Z W, et al. Grouping bi-Chi-squared method for pulsar navigation experiment using observations of Rossi X-ray timing explorer[J]. Chinese Journal of Aeronautics2022,.
89 GRAVEN J P, COLLINS J. SHEIKH S,et al. XNAV for deep space navigation[C]∥ 31th Annual AAS Guidance and Control Conference, 2008.
90 GRAVEN P, COLLINS J, SHEIKH S, et al. Spacecraft navigation using X-Ray pulsars[C]∥ 7th International ESA Conference on Guidance, Navigation & Control Systems, 2008.
91 宁晓琳, 马辛, 张学亮, 等. 基于ASUKF的火星探测器脉冲星自主导航方法[J]. 北京航空航天大学学报201238(1): 22-27.
  NING X L, MA X, ZHANG X L, et al. Autonomous pulsars navigation method based on ASUKF for Mars probe[J]. Journal of Beijing University of Aeronautics and Astronautics201238(1): 22-27 (in Chinese).
92 WANG W B, SHU L Z, LIU J K, et al. Joint navigation performance of distant retrograde orbits and cislunar orbits via LiAISON considering dynamic and clock model errors[J]. Navigation201966(4): 781-802.
93 LIU J K, WANG W B, ZHANG H, et al. Autonomous orbit determination and timekeeping in lunar distant retrograde orbits by observing X‐ray pulsars[J]. Navigation202168(4): 687-708
94 郑伟, 张璐, 王奕迪. 基于星联网的深空自主导航方案设计[J]. 深空探测学报20174(1): 31-37.
  ZHENG W, ZHANG L, WANG Y D. Design of deep space autonomous navigation system based on spacecraft networking[J]. Journal of Deep Space Exploration20174(1): 31-37 (in Chinese).
95 信世军. 星联网基准系统设计及其自主导航方法研究[D]. 长沙: 国防科技大学, 2017.
  XIN S J. Design for the absolute reference system of the Internet of spacecraft and research on its autonomous navigation methods[D]. Changsha: National University of Defense Technology, 2017 (in Chinese).
Outlines

/