ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Comparison of anti-icing performance between plasma actuation and electric heating
Received date: 2022-09-05
Revised date: 2022-09-26
Accepted date: 2022-10-08
Online published: 2022-10-14
Supported by
National Science and Technology Major Project (J2019-Ⅱ-0014-0035);Foundation Strengthening Fund(2019-053);National Key Laboratory Foundation of China(614220220200107);Foundation of Key Laboratory of Chongqing(GATRI2020C06003)
Aircraft icing threatens flight safety. To solve this problem, this paper makes a comparative study of the anti-icing performance of plasma actuation, resistance wire electric heating and graphene electric heating arranged on the NACA0012 airfoil in the icing wind tunnel by recording the icing dynamics process and the temperature variation of the area. The results show that with the same input power, both plasma actuation and graphene electric heating can effectively prevent icing, while resistance wire electric heating cannot completely prevent ice accumulation in the area without heat source. The infrared measurement results show that the maximum surface temperature of graphene electrothermal film after heating is lower than that of the other two methods. However, due to its uniform heating properties, the minimum temperature of the entire heated surface remains above 0 ℃, which is sufficient to prevent icing. For plasma actuation and resistance wire electric heating, the temperature distributions on their surfaces are not uniform. The heat dissipation performance of plasma actuation is higher than that of resistance wire electric heating. Plasma actuation directly heats the incoming cold air and supercooled water droplets around the actuator by gas discharge near the wall, while resistance wire electric heating has poor heat conduction in the insulating medium and thus cannot effectively increase the surrounding heat, resulting in icing easily in the area without heat source.
Key words: anti-icing; plasma; resistance wire; graphene; heat conduction
Like XIE , Hua LIANG , Yun WU , Yulin FANG , Biao WEI , Zhi SU , Xuecheng LIU , Borui ZHENG . Comparison of anti-icing performance between plasma actuation and electric heating[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(1) : 627971 -627971 . DOI: 10.7527/S1000-6893.2022.27971
1 | CAO Y H, WU Z L, SU Y, et al. Aircraft flight characteristics in icing conditions[J]. Progress in Aerospace Sciences, 2015, 74: 62-80. |
2 | 武朋玮, 李颖晖, 郑无计, 等. 基于可达集方法的结冰飞机着陆阶段安全风险评估[J]. 航空学报, 2018, 39(12): 122139. |
WU P W, LI Y H, ZHENG W J, et al. Flight risk evaluation based on reachable set method at the phase of icing aircraft landing[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 122139 (in Chinese). | |
3 | 魏扬, 徐浩军, 薛源, 等. 机翼前缘积冰对大飞机操稳特性的影响[J]. 北京航空航天大学学报, 2019, 45(6): 1088-1095. |
WEI Y, XU H J, XUE Y, et al. Influence of ice accretion on leading edge of wings on stability and controllability of large aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1088-1095 (in Chinese). | |
4 | 郁嘉, 赵柏阳, 卜雪琴, 等. 某型飞机发动机短舱热气防冰系统性能数值模拟[J]. 空气动力学学报, 2016, 34(3): 302-307. |
YU J, ZHAO B Y, BU X Q, et al. Numerical simulation of the performance of an engine nacelle hot-air anti-icing system[J]. Acta Aerodynamica Sinica, 2016, 34(3): 302-307 (in Chinese). | |
5 | 徐佳佳. 飞机风挡玻璃电加热防冰研究[D]. 南京: 南京航空航天大学, 2012. |
XU J J. Studies of electro-thermal anti-icing system for aircraft windshield[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). | |
6 | 邵元培, 车竞, 丁娣. 大飞机机翼结冰对飞行动力学特性影响研究[J]. 飞行力学, 2018, 36(1): 12-15, 19. |
SHAO Y P, CHE J, DING D. Study on the influence of wing icing on flight dynamics characteristics of large aircraft[J]. Flight Dynamics, 2018, 36(1): 12-15, 19 (in Chinese). | |
7 | 伍强, 徐浩军, 魏扬, 等. 结冰条件下飞机气动/运动耦合特性[J]. 航空学报, 2022, 43(8): 125566. |
WU Q, XU H J, WEI Y, et al. Aerodynamics/flight dynamics coupling characteristics of aircraft under icing conditions[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125566 (in Chinese). | |
8 | 卜雪琴, 郁嘉, 林贵平, 等. 机翼热气防冰系统设计[J]. 北京航空航天大学学报, 2010, 36(8): 927-930. |
BU X Q, YU J, LIN G P, et al. Investigation of the design of wing hot-air anti-icing system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(8): 927-930 (in Chinese). | |
9 | 郭之强, 郑梅, 董威, 等. 表面凸起对机翼热气防冰腔内换热强化的影响[J]. 航空学报, 2017, 38(2): 520709. |
GUO Z Q, ZHENG M, DONG W, et al. Influence of surface convex on heat transfer enhancement of wing hot air anti-icing system[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520709 (in Chinese). | |
10 | 雷桂林. 电热防冰除冰及冰融化相变换热机理研究[D]. 上海: 上海交通大学, 2017. |
LEI G L. Study on electrothermal anti-icing and de-icing and mechanism of heat transfer of ice melting phase change[D]. Shanghai: Shanghai Jiao Tong University, 2017 (in Chinese). | |
11 | 康欣然, 李江海, 胡利, 等. 一种分布式无人机电热防除冰系统: CN214566187U[P]. 2021-11-02. |
KANG X R, LI J H, HU L, et al. Distributed unmanned aerial vehicle electric heating anti-icing and de-icing system: CN214566187U[P]. 2021-11-02 (in Chinese). | |
12 | ROELKE R J, KEITH T G, DE WITT K J, et al. Efficient numerical simulation of a one-dimensional electrothermal deicer pad[J]. Journal of Aircraft, 1988, 25(12): 1097-1105. |
13 | WRIGHT W B, KEITH T G, DEWITT K J. Numerical analysis of a thermal deicer: AIAA-1992-0527[R]. Reston: AIAA, 1992. |
14 | MU Z D, LIN G P, SHEN X B, et al. Numerical simulation of unsteady conjugate heat transfer of electrothermal deicing process[J]. International Journal of Aerospace Engineering, 2018, 2018: 1-16. |
15 | 肖春华, 桂业伟, 林贵平. 飞机电热除冰的研究进展与展望[J]. 科技导报, 2011, 29(18): 69-73. |
XIAO C H, GUI Y W, LIN G P. A review of studies of aircraft electrothermal de-icing[J]. Science & Technology Review, 2011, 29(18): 69-73 (in Chinese). | |
16 | 刘重洋. 飞机电热防/除冰系统数值计算及实验研究[D]. 南京: 南京航空航天大学, 2020. |
LIU C Y. Numerical calculation and experimental study of aircraft electrothermal anti/de-icing system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese). | |
17 | 胡琪, 黄安平, 孙涛, 等. 机翼防/除冰技术研究进展[J]. 科技导报, 2015, 33(7): 114-119. |
HU Q, HUANG A P, SUN T, et al. Progress of airfoil anti-icing and de-icing technologies[J]. Science & Technology Review, 2015, 33(7): 114-119 (in Chinese). | |
18 | 林贵平, 卜雪琴, 申晓斌. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016. |
LIN G P, BU X Q, SHEN X B. Aircraft icing and anti-icing technology[M]. Beijing: Beihang University Press, 2016 (in Chinese). | |
19 | ZHENG H, LIANG H, CHEN J, et al. Experimental study on plasma actuation characteristics of nanosecond pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2022, 24(1): 015505. |
20 | STARIKOVSKII A Y, NIKIPELOV A A, NUDNOVA M M, et al. SDBD plasma actuator with nanosecond pulse-periodic discharge[J]. Plasma Sources Science and Technology, 2009, 18(3): 034015. |
21 | BENMOUSSA A, BELASRI A, HARRACHE Z. Numerical investigation of gas heating effect in dielectric barrier discharge for Ne-Xe excilamp[J]. Current Applied Physics, 2017, 17(4): 479-483. |
22 | ERFANI R, ZARE-BEHTASH H, KONTIS K. Plasma actuator: Influence of dielectric surface temperature[J]. Experimental Thermal and Fluid Science, 2012, 42: 258-264. |
23 | CAI J S, TIAN Y Q, MENG X S, et al. An experimental study of icing control using DBD plasma actuator[J]. Experiments in Fluids, 2017, 58(8): 102. |
24 | MENG X S, HU H Y, LI C, et al. Mechanism study of coupled aerodynamic and thermal effects using plasma actuation for anti-icing[J]. Physics of Fluids, 2019, 31(3): 037103. |
25 | 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027. |
ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese). | |
26 | ZHANG X, ZHAO Y G, YANG C. Recent developments in thermal characteristics of surface dielectric barrier discharge plasma actuators driven by sinusoidal high-voltage power[J]. Chinese Journal of Aeronautics, 2023, 36(1): 1-21. |
27 | DURASIEWICZ C, SINGH A, LITTLE J C. A comparative flow physics study of ns-DBD vs ac-DBD plasma actuators for transient separation control on a NACA 0012 airfoil: AIAA-2018-1061[R]. Reston: AIAA, 2018. |
28 | 孟宣市, 惠伟伟, 易贤, 等. AC-SDBD等离子体激励防/除冰研究现状与展望[J]. 空气动力学学报, 2022, 40(2): 31-49. |
MENG X S, HUI W W, YI X, et al. Anti-/de-icing by AC-SDBD plasma actuators: Status and outlook[J]. Acta Aerodynamica Sinica, 2022, 40(2): 31-49 (in Chinese). | |
29 | LIU Y, KOLBAKIR C, HU H Y, et al. An experimental study on the thermal effects of duty-cycled plasma actuation pertinent to aircraft icing mitigation[J]. International Journal of Heat and Mass Transfer, 2019, 136: 864-876. |
30 | LIU Y, KOLBAKIR C, HU H Y, et al. A comparison study on the thermal effects in DBD plasma actuation and electrical heating for aircraft icing mitigation[J]. International Journal of Heat and Mass Transfer, 2018, 124: 319-330. |
31 | WEI B, WU Y, LIANG H, et al. SDBD based plasma anti-icing: A stream-wise plasma heat knife configuration and criteria energy analysis[J]. International Journal of Heat and Mass Transfer, 2019, 138: 163-172. |
32 | 田苗, 宋慧敏, 梁华, 等. 介质阻挡放电等离子体防除冰实验研究[J]. 化工学报, 2019, 70(11): 4247-4256. |
TIAN M, SONG H M, LIANG H, et al. Experimental study on DBD discharge plasma for anti-icing and de-icing[J]. CIESC Journal, 2019, 70(11): 4247-4256 (in Chinese). | |
33 | WU Y, WEI B, LIANG H, et al. Flight safety oriented ice shape modulation using distributed plasma actuator units[J]. Chinese Journal of Aeronautics, 2021, 34(10): 1-5. |
34 | XIE L K, LIANG H, ZONG H H, et al. Multipurpose distributed dielectric-barrier-discharge plasma actuation: Icing sensing, anti-icing, and flow control in one[J]. Physics of Fluids, 2022, 34(7): 071701. |
35 | 刘雪城, 梁华, 宗豪华, 等. NACA0012翼型等离子体冰形调控试验[J]. 航空学报, 2022, 43(9): 126283. |
LIU X C, LIANG H, ZONG H H, et al. Experiment on plasma ice shape modulation based on NACA0012 airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 126283 (in Chinese). | |
36 | 魏杰, 李昊, 张亚男, 等. 石墨烯复合材料在电热防/除冰领域研究进展[J]. 中国材料进展, 2022, 41(6): 487-496. |
WEI J, LI H, ZHANG Y N, et al. Research progress of graphene composites in the field of electrothermal anti-icing/deicing[J]. Materials China, 2022, 41(6): 487-496 (in Chinese). | |
37 | 田甜. 石墨烯复合材料电加热除冰理论和实验研究[D]. 南京: 南京航空航天大学, 2020. |
TIAN T. Theoretical and experimental study on electric heating deicing of graphene composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese). | |
38 | ZHENG X, SONG H M, BIAN D L, et al. A hybrid plasma de-icing actuator by using SiC hydrophobic coating-based quartz glass as barrier dielectric[J]. Journal of Physics D: Applied Physics, 2021, 54(37): 375202. |
/
〈 |
|
〉 |