ACTA AERONAUTICAET ASTRONAUTICA SINICA >
A sharp-interface immersed boundary method combined with wall model to simulate turbulent flow
Received date: 2022-06-23
Revised date: 2022-09-26
Accepted date: 2022-10-11
Online published: 2022-10-14
Supported by
National Natural Science Foundation of China(12072158);Natural Science Foundation of Jiangsu Province(BK20191271)
A robust sharp-interface immersed boundary method is proposed to simulate the incompressible turbulence flow over a solid obstacle. Based on the OpenFOAM, the solver combines the implicit split operator algorithm with the
Key words: immersed boundary method; wall model; sharp interface; turbulence flow; OpenFOAM
Shizhao ZHANG , Jie WU , Dewu YANG , Xinyu CONG . A sharp-interface immersed boundary method combined with wall model to simulate turbulent flow[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(11) : 127673 -127673 . DOI: 10.7527/S1000-6893.2022.27673
1 | L?HNER R, CEBRAL J R, CAMELLI F F, et al. Adaptive embedded/immersed unstructured grid techniques[J]. Archives of Computational Methods in Engineering, 2007, 14(3): 279-301. |
2 | L?HNER R, BAUM J D, MESTREAU E, et al. Adaptive embedded unstructured grid methods[J]. International Journal for Numerical Methods in Engineering, 2004, 60(3): 641-660. |
3 | PESKIN C S. Numerical analysis of blood flow in the heart[J]. Journal of Computational Physics, 1977, 25(3): 220-252. |
4 | HUANG W X, TIAN F B. Recent trends and progress in the immersed boundary method[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(23-24): 7617-7636. |
5 | CUI Z, YANG Z X, JIANG H Z, et al. A sharp-interface immersed boundary method for simulating incompressible flows with arbitrarily deforming smooth boundaries[J]. International Journal of Computational Methods, 2018, 15(1): 1750080. |
6 | SCHNEIDERS L, GüNTHER C, MEINKE M, et al. An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows[J]. Journal of Computational Physics, 2016, 311: 62-86. |
7 | MURALIDHARAN B, MENON S. Simulation of moving boundaries interacting with compressible reacting flows using a second-order adaptive Cartesian cut-cell method[J]. Journal of Computational Physics, 2018, 357: 230-262. |
8 | EHSAN KHALILI M, LARSSON M, MüLLER B. Immersed boundary method for viscous compressible flows around moving bodies[J]. Computers & Fluids, 2018, 170: 77-92. |
9 | BRAHMACHARY S, NATARAJAN G, KULKARNI V, et al. A sharp-interface immersed boundary method for high-speed compressible flows[J] Immersed Boundary Method Development and Applications, 2020: 251-275. |
10 | BLAZEK J. Principles of grid generation[M]∥Computational Fluid Dynamics: Principles and Applications. Amsterdam: Elsevier, 2001: 353-392. |
11 | PU T, ZHOU C. An immersed boundary/wall modeling method for RANS simulation of compressible turbulent flows[J]. International Journal for Numerical Methods in Fluids, 2018, 87(5): 217-238. |
12 | CABOT W, MOIN P. Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow[J]. Flow, Turbulence and Combustion, 2000, 63(1): 269-291. |
13 | 杜银杰, 舒昌, 杨鲤铭, 等. 扩散界面浸入边界法结合壁面模型在湍流模拟中的应用[J]. 航空学报, 2021, 42(): 54-64. |
DU Y J, SHU C, YANG L M, et al. Wall model based diffuse-interface immersed boundary method and its application in turbulent flows[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(Sup 1): 54-64 (in Chinese). | |
14 | 李旭, 周洲, 薛臣. 一种适合迭代求解的反馈力浸入边界法[J]. 航空学报, 2020, 41(9): 123712. |
LI X, ZHOU Z, XUE C. Feedback forcing immersed boundary method for iterative calculations[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 123712 (in Chinese). | |
15 | 胡国暾, 杜林, 孙晓峰. 基于浸入式边界法的振荡转子叶片数值模拟[J]. 航空学报, 2014, 35(8): 2112-2125. |
HU G, DU L, SUN X F. An immersed boundary method for simulating oscillating rotor blades[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8): 2112-2125 (in Chinese). | |
16 | 陈浩, 华如豪, 袁先旭, 等. 基于自适应笛卡尔网格的飞翼布局流动模拟[J]. 航空学报, 2022, 43(8): 125674. |
CHEN H, HUA R H, YUAN X X, et al. Simulation of flow around fly-wing configuration based on adaptive Cartesian grid[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125674 (in Chinese). | |
17 | 唐志共, 陈浩, 毕林, 等. 自适应笛卡尔网格超声速黏性流动数值模拟[J]. 航空学报, 2018, 39(5): 121697. |
TANG Z G, CHEN H, BI L, et al. Numerical simulation of supersonic viscous flow based on adaptive Cartesian grid[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121697 (in Chinese). | |
18 | XU Y C, LIU X F. An immersed boundary method with y +-adaptive wall function for smooth wall shear[J]. International Journal for Numerical Methods in Fluids, 2021, 93(6): 1929-1946. |
19 | KNOPP T, ALRUTZ T, SCHWAMBORN D. A grid and flow adaptive wall-function method for RANS turbulence modelling[J]. Journal of Computational Physics, 2006, 220(1): 19-40. |
20 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
21 | SPALDING D B. A single formula for the “law of the wall”[J]. Journal of Applied Mechanics, 1961, 28(3): 455-458. |
22 | HOLZMANN T. Mathematics, numerics, derivations and OpenFOAM[D]. Loeben: Holzmann CFD, 2016. |
23 | KALITZIN G, MEDIC G, IACCARINO G, et al. Near-wall behavior of RANS turbulence models and implications for wall functions[J]. Journal of Computational Physics, 2005, 204(1): 265-291. |
24 | KALITZIN G, IACCARINO G. Toward immersed boundary simulation of high Reynolds number flows[R]. 2003. |
25 | LEE J D, RUFFIN S. Development of a turbulent wall-function based viscous Cartesian-grid methodology[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007: 1326. |
26 | Buice 2D diffuser[EB/OL]. (2021-02-10). . |
27 | OBI S, AOKI K, MASUDA S. Experimental and computational study of turbulent separating flow in an asymmetric plane diffuser[C]∥9th International Symposium on Turbulent Shear Flows. Kyoto: Shinnosuki Obi, 1993: 305-312. |
28 | YE H X, WAN D C. Benchmark computations for flows around a stationary cylinder with high Reynolds numbers by RANS-overset grid approach[J]. Applied Ocean Research, 2017, 65: 315-326. |
29 | YEON S M, YANG J M, STERN F. Large-eddy simulation of the flow past a circular cylinder at sub- to super-critical Reynolds numbers[J]. Applied Ocean Research, 2016, 59: 663-675. |
30 | NGUYEN V B, DO Q V, PHAM V S. An OpenFOAM solver for multiphase and turbulent flow[J]. Physics of Fluids, 2020, 32(4): 043303. |
31 | SCHEWE G. On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers[J]. Journal of Fluid Mechanics, 1983, 133: 265-285. |
32 | TRIAS F X, GOROBETS A, OLIVA A. Turbulent flow around a square cylinder at Reynolds number 22, 000: A DNS study[J]. Computers & Fluids, 2015, 123: 87-98. |
33 | SOHANKAR A, DAVIDSON L, NORBERG C. Large eddy simulation of flow past a square cylinder: Comparison of different subgrid scale models[J]. Journal of Fluids Engineering, 2000, 122(1): 39-47. |
34 | NORBERG C. Flow around rectangular cylinders: Pressure forces and wake frequencies[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49(1-3): 187-196. |
/
〈 |
|
〉 |