Fluid Mechanics and Flight Mechanics

Rapid prediction of global hypersonic vehicle aerothermodynamics based on adaptive sampling

  • Guotao YANG ,
  • Zhenjiang YUE ,
  • Li LIU
Expand
  • 1.School of Aerospace Engineering,Beijing Institute of Technology,Beijing  100081,China
    2.Key Laboratory of Dynamics and Control of Flight Vehicle of Ministry of Education,Beijing Institute of Technology,Beijing  100081,China

Received date: 2022-05-09

  Revised date: 2022-06-04

  Accepted date: 2022-09-15

  Online published: 2022-09-30

Supported by

National Level Project

Abstract

High-fidelity aerothermodynamics analysis models in the thermal protection system of the hypersonic vehicles significantly increase the computational budget of engineering design, drawing extensive attention on data-driven based rapid prediction methods. This paper proposes a batch adaptive sampling method based on fuzzy clustering to improve the global prediction accuracy with the limited computational budget of high fidelity models. The sampling influence domain is constructed by clustering and hypersphere segmentation with the distribution characteristics of the prediction error, considering both the key sampling domain with larger errors and global exploration. The sampling refused domain is developed by the local error scoring coefficient weighted to reduce the redundancy of newly added samples. The method adds new samples in the comprehensively determined key sampling space to improve the sampling quality based on the maxmin criterion, thereby rapidly improving the global accuracy of the prediction models. The comparison results show that the proposed method outperforms One-Shot, APSFC and CV-Voronoi in terms of reducing the sampling scale required and accelerating prediction accuracy improvement. The rapid prediction results of the HTV-2 typed vehicle aerothermodynamics demonstrate the practicality and effectiveness of the proposed method in engineering practices.

Cite this article

Guotao YANG , Zhenjiang YUE , Li LIU . Rapid prediction of global hypersonic vehicle aerothermodynamics based on adaptive sampling[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(6) : 127391 -127391 . DOI: 10.7527/S1000-6893.2022.27391

References

1 黄伟, 罗世彬, 王振国. 临近空间高超声速飞行器关键技术及展望[J]. 宇航学报201031(5): 1259-1265.
  HUANG W, LUO S B, WANG Z G. Key techniques and prospect of near-space hypersonic vehicle[J]. Journal of Astronautics201031(5): 1259-1265 (in Chinese).
2 彭治雨, 石义雷, 龚红明, 等. 高超声速气动热预测技术及发展趋势[J]. 航空学报201536(1): 325-345.
  PENG Z Y, SHI Y L, GONG H M, et al. Hypersonic aeroheating prediction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica201536(1): 325-345 (in Chinese).
3 喻成璋, 刘卫华. 高超声速飞行器气动热预测技术研究进展[J]. 航空科学技术202132(2): 14-21.
  YU C Z, LIU W H. Research status of aeroheating prediction technology for hypersionic aircraft[J]. Aeronautical Science & Technology202132(2): 14-21 (in Chinese).
4 杨恺, 高效伟. 高超声速气动热环境工程算法[J]. 导弹与航天运载技术2010(4): 19-23.
  YANG K, GAO X W. Engineering algorithm for aeroheating environment of hypersonic aircrafts[J]. Missiles and Space Vehicles2010(4): 19-23 (in Chinese).
5 DOWELL E H. Eigenmode analysis in unsteady aerodynamics-reduced-order models[J]. AIAA Journal199634(8): 1578-1583.
6 YONDO R, ANDRéS E, VALERO E. A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses[J]. Progress in Aerospace Sciences201896: 23-61.
7 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报201940(1): 522480.
  CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica201940(1): 522480 (in Chinese).
8 YAN X X, HAN J L, ZHANG B, et al. Model reduction of aerothermodynamic for hypersonic aerothermoelasticity based on POD and Chebyshev method[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2019233(10): 3734-3748.
9 张智超, 高太元, 张磊, 等. 基于径向基神经网络的气动热预测代理模型[J]. 航空学报202142(4): 524167.
  ZHANG Z C, GAO T Y, ZHANG L, et al. Aeroheating agent model based on radial basis function neural network[J]. Acta Aeronautica et Astronautica Sinica202142(4): 524167 (in Chinese).
10 GARUD S S, KARIMI I A, KRAFT M. Design of computer experiments: A review[J]. Computers & Chemical Engineering2017106: 71-95.
11 FORRESTER A I J, SOBESTER A, KEANE A J. Engineering design via surrogate modelling: A practical guide[M]. New York: John Wiley & Sons, 2008: 13-29.
12 CROMBECQ K, GORISSEN D, DESCHRIJVER D, et al. A novel hybrid sequential design strategy for global surrogate modeling of computer experiments[J]. SIAM Journal on Scientific Computing201133(4): 1948-1974.
13 LIU H T, ONG Y S, CAI J F. A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design[J]. Structural and Multidisciplinary Optimization201857(1): 393-416.
14 FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences200945(1-3): 50-79.
15 李春娜, 张阳康. 一种适用于气动优化的高效自适应全局优化方法[J]. 航空学报202041(5): 623352.
  LI C N, ZHANG Y K. An efficient adaptive global optimization method suitable for aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica202041(5): 623352 (in Chinese).
16 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报202041(5): 623344.
  HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica202041(5): 623344 (in Chinese).
17 SIMPSON T W, MAUERY T M, KORTE J J, et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization[J]. AIAA Journal200139(12): 2233-2241.
18 LIU H T, XU S L, MA Y, et al. An adaptive Bayesian sequential sampling approach for global metamodeling[J]. Journal of Mechanical Design2016138(1): 011404.
19 XIONG Y, CHEN W, APLEY D, et al. A non-stationary covariance-based Kriging method for metamodelling in engineering design[J]. International Journal for Numerical Methods in Engineering200771(6): 733-756.
20 YAO W, CHEN X Q, LUO W C. A gradient-based sequential radial basis function neural network modeling method[J]. Neural Computing and Applications200918(5): 477-484.
21 FARHANG-MEHR A, AZARM S. Bayesian meta-modelling of engineering design simulations: A sequential approach with adaptation to irregularities in the response behaviour[J]. International Journal for Numerical Methods in Engineering200562(15): 2104-2126.
22 TURNER C J, CRAWFORD R H, CAMPBELL M I. Multidimensional sequential sampling for NURBs-based metamodel development[J]. Engineering With Computers200723(3): 155-174.
23 LI G Z, AUTE V, AZARM S. An accumulative error based adaptive design of experiments for offline metamodeling[J]. Structural and Multidisciplinary Optimization201040(1): 137-155.
24 AUTE V, SALEH K, ABDELAZIZ O, et al. Cross-validation based single response adaptive design of experiments for Kriging metamodeling of deterministic computer simulations[J]. Structural and Multidisciplinary Optimization201348(3): 581-605.
25 CHEN X, LIU L, ZHOU S, et al. Adding-point strategy for reduced-order hypersonic aerothermodynamics modeling based on fuzzy clustering[J]. Chinese Journal of Mechanical Engineering201629(5): 983-991.
26 XU S L, LIU H T, WANG X F, et al. A robust error-pursuing sequential sampling approach for global metamodeling based on voronoi diagram and cross validation[J]. Journal of Mechanical Design2014136(7): 69-74.
27 KAMINSKY A L, WANG Y, PANT K, et al. Adaptive sampling techniques for surrogate modeling to create high-dimension aerodynamic loading response surfaces[C]∥ 2018 Applied Aerodynamics Conference. Reston: AIAA, 2018.
28 JOHNSON M E, MOORE L M, YLVISAKER D. Minimax and maximin distance designs[J]. Journal of Statistical Planning and Inference199026(2): 131-148.
29 BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Springer Science & Business Media, 2013: 1-7.
30 ROUSSEEUW P J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics198720: 53-65.
31 OLIVER M A. A tutorial guide to geostatistics: Computing and modelling variograms and Kriging[J]. CATENA2014113: 56-69.
32 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报201637(11): 3197-3225.
  HAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica201637(11): 3197-3225 (in Chinese).
33 甄华萍, 蒋崇文. 高超声速技术验证飞行器HTV-2综述[J]. 飞航导弹2013(6): 7-13.
  ZHEN H P, JIANG C W. Overview of hypersonic technology verification vehicle HTV-2[J]. Aerodynamic Missile Journal2013(6): 7-13 (in Chinese).
34 SHI J T, ZHANG L, JIANG B S, et al. Aerodynamic force and heating optimization of HTV-2 typed vehicle[C]∥ 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017.
Outlines

/