Solid Mechanics and Vehicle Conceptual Design

Reliability of aero-engine wheel model assisted eddy current testing based on two-parameter representation

  • Kai SONG ,
  • Chi ZHANG ,
  • Chenhui YAN ,
  • Ning NING ,
  • Junling FAN ,
  • Rongbiao WANG
Expand
  • 1.Key Laboratory of Nondestructive Testing,Ministry of Education,Nanchang Hangkong University,Nanchang 330063,China
    2.Aircraft Strength Research Institute of China,Xi’an 710065,China

Received date: 2022-07-28

  Revised date: 2022-08-26

  Accepted date: 2022-09-15

  Online published: 2022-09-22

Supported by

National Natural Science Foundation of China(51865033);Special Scientific Research Program from the Ministry of Industry and Information Technology of China;PhD Start-up Foundation(EA202208183)

Abstract

The key index a90/95 of Probability of Detection (POD) is used in the design of aero-engine disk damage tolerance. Aiming at the problem that a90/95 of the POD study on single size parameters causes inaccurate capability representation of the eddy current detection system, this paper proposes a Model-Assisted Probability of Detection (MAPOD) model based on two-parameter representation by analyzing the influence of length and depth factors of manual grooving defects on POD. The model assumes that the eddy current response amplitude of the defect described by the two-dimension parameter vector x follows a normal distribution. The simulation and eddy current test response data are substituted into the maximum likelihood estimation to obtain the model parameters, and the reliability parameters characterizing the detection system are then calculated. After analysis of the eddy current signal generated by the TC4 defect, the influence degree of the number of defects on the single parameter model and the improved model is compared. The results show that the improved MAPOD model can characterize the Nondestructive Testing(NDT) system capability more accurately with fewer samples compared with the single-parameter POD model. Finally, the detection capability of the aero-engine wheel eddy current testing system is evaluated with a small number of defect samples, providing important basis for aero-engine maintenance cycle and DamageTolerance (DT) design.

Cite this article

Kai SONG , Chi ZHANG , Chenhui YAN , Ning NING , Junling FAN , Rongbiao WANG . Reliability of aero-engine wheel model assisted eddy current testing based on two-parameter representation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(13) : 227866 -227866 . DOI: 10.7527/S1000-6893.2022.27866

References

1 江荣,吴常皓,万煜伟,等.涡轮盘合金氧化-疲劳裂纹扩展机理和寿命预测研究进展[J].机械工程学报202157(16):122-131.
  JIANG R, WU C H, WAN Y W, et al. Progress on oxidation-fatigue crack propagation mechanisms and life prediction in turbine disc alloys[J]. Journal of Mechanical Engineering202157(16): 122-131 (in Chinese).
2 郑小梅, 孙燕涛, 杨兴宇, 等.某涡扇发动机高压涡轮盘螺栓孔低循环疲劳模拟件设计[J]. 航空动力学报201833(10): 2351-2358.
  ZHENG X M, SUN Y T, YANG X Y, et al. Design of low cycle fatigue simulating specimen for bolt holes of a turbofan engine high pressure turbine disc[J]. Journal of Aerospace Power201833(10): 2351-2358 (in Chinese).
3 丁水汀, 潘博超, 李果, 等.寿命限制件概率失效风险评估材料缺陷数据模型[J]. 航空动力学报201833(5): 1270-1280.
  DING S T, PAN B C, LI G, et al. Material defects data model of probabilistic risk assessment on life limited prat[J]. Journal of Aerospace Power201833(5): 1270-1280 (in Chinese).
4 段发阶, 牛广越, 周琦, 等. 航空发动机叶尖间隙在线测量技术研究综述[J]. 航空学报202243(9): 626014.
  DUAN F J, NIU G Y, ZHOU Q, et al. A review of online blade tip clearance measurement technologies for aeroengines[J]. Acta Aeronautica et Astronautica Sinica202243(9): 626014 (in Chinese).
5 陆山, 李波. 考虑表面加工缺陷的轮盘疲劳寿命分析方法[J]. 航空发动机201440(5): 7-12.
  LU S, LI B. An analysis method of disk fatigue life considering surface manufacturing-induced anomaly[J]. Aeroengine201440(5): 7-12 (in Chinese).
6 丁水汀, 周惠敏, 刘俊博, 等. 航空发动机限寿件表面特征概率损伤容限评估[J]. 航空动力学报202136(2): 421-430.
  DING S T, ZHOU H M, LIU J B, et al. Probabilistic damage tolerance assessment of surface features of aero engine life limited parts[J]. Journal of Aerospace Power202136(2): 421-430 (in Chinese).
7 刘秀丽, 黄华斌. 涡流法对不同厚度隔层下裂纹检出概率的测试研究[J]. 航空学报199819(4): 106-109.
  LIU X L, HUANG H B. Study on crack inspection probability by using eddy current under different thickness cover layers[J]. Acta Aeronautica et Astronautica Sinica199819(4): 106-109 (in Chinese).
8 王静. 奥氏体不锈钢上缺陷的涡流无损检测可靠性研究[D]. 青岛: 青岛科技大学, 2021.
  WANG J. Reliability of eddy current nondestructive testing for defects on austenitic stainless steel[D]. Qingdao: Qingdao University of Science & Technology, 2021 (in Chinese).
9 李莹莹. 相控阵超声检测可靠性与POD数值模拟初探[D]. 大连: 大连理工大学, 2014.
  LI Y Y. Initial exploration on the reliability of phased array ultrasonic testing and numerical simulation of POD[D]. Dalian: Dalian University of Technology, 2014 (in Chinese).
10 陈光. 涡轮盘中隐藏多年的瑕疵导致波音767烧毁[J]. 航空动力2019(6): 56-58.
  CHEN G. A hidden defect in the turbine disk result in a boeing 767 burned[J]. Aerospace Power2019(6): 56-58 (in Chinese).
11 RENTALA V K, MYLAVARAPU P, GAUTAM J P. Issues in estimating probability of detection of NDT techniques–A model assisted approach[J]. Ultrasonics201887: 59-70.
12 张国才, 谢小荣, 刘永钊, 等. 叶片前缘仿形涡流检测仿真与试验设计[J]. 航空学报202142(2): 398-409.
  ZHANG G C, XIE X R, LIU Y Z, et al. Simulation and experimental design of profiling eddy current detection of blade leading edge[J]. Acta Aeronautica et Astronautica Sinica202142(2): 398-409 (in Chinese).
13 张海兵, 王世涛, 单柏荣. 基于CIVA的覆有涂层叶片涡流检测仿真与POD分析[J]. 航空制造技术202164(12): 90-93, 101.
  ZHANG H B, WANG S T, SHAN B R. Simulation and POD analysis of eddy current detection of coated blade based on CIVA[J]. Aeronautical Manufacturing Technology202164(12): 90-93, 101 (in Chinese).
14 倪晨. 退役发动机曲轴缺陷涡流/磁记忆检测与寿命预测研究[D]. 武汉: 武汉理工大学, 2019.
  NI C. Research on eddy current/magnetic memory testing and life prediction for retired engine crankshaft[D]. Wuhan: Wuhan University of Technology, 2019 (in Chinese).
15 王炜强, 贾晓洪, 杨东升, 等. 制导武器效能评估试验设计方法综述与应用探讨[J]. 航空兵器201522(6): 46-48, 54.
  WANG W Q, JIA X H, YANG D S, et al. An overview and application of DOE for guided weapon performance evaluation[J]. Aero Weaponry201522(6): 46-48, 54 (in Chinese).
16 王静, 凌元锦. 奥氏体不锈钢上缺陷涡流探头POD新模型[J]. 青岛科技大学学报(自然科学版)202142(6): 96-100.
  WANG J, LING Y J. Novel POD model of eddy current probes for inspecting pits on austenitic stainless steel[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition)202142(6): 96-100 (in Chinese).
17 BATO M R, HOR A, RAUTUREAU A, et al. Experimental and numerical methodology to obtain the probability of detection in eddy current NDT method[J]. NDT & E International2020114: 102300.
18 LE G L, IOOSS B, BLATMAN G, et al. Model assisted probability of detection curves: New statistical tools and progressive methodology[J]. Journal of Nondestructive Evaluation201736(1):1-12.
19 PARK I K, KIM H M. Model for predicting ultrasonic NDE reliability and statistical data analysis of piping inspection round robin[J]. International Journal of Reliability and Applications20045(1): 25-36.
20 CARBONI M, CANTINI S. Advanced ultrasonic “Probability of Detection” curves for designing in-service inspection intervals[J]. International Journal of Fatigue201686: 77-87.
21 UNDERHILL P R, KRAUSE T W. Quantitative fractography for improved probability of detection (POD) analysis of bolt hole eddy current[J]. Research in Nondestructive Evaluation201122(2): 92-104.
22 YUSA N, TOMIZAWA T, SONG H C, et al. Probability of detection analyses of eddy current data for the detection of corrosion[J]. Badania Nieniszcz?ce i Diagnostyka20184: 3-7.
23 PAVLOVI? M, TAKAHASHI K, MüLLER C. Probability of detection as a function of multiple influencing parameters[J]. Insight-Non-Destructive Testing and Condition Monitoring201254(11): 606-611.
24 MOSKOVCHENKO A, ?VANTNER M, VAVILOV V, et al. Analyzing probability of detection as a function of defect size and depth in pulsed IR thermography[J]. NDT & E International2022130: 102673.
25 KEPRATE A, RATNAYAKE R M C. Probability of detection as a metric for quantifying NDE capability: The state of the art[J]. The Journal of Pipeline Engineering201514(3): 199-209.
26 中国国际航空公司工程技术分公司成都维修基地,北京飞机维修工程有限公司,厦门航空公司. 航空器无损检测涡流检验: [S]. 北京: 中国科学技术出版社, 2006.
  Air China Engineering Technology Branch Chengdu Maintenance Base, Beijing Aircraft Maintenance Engineering Co., Ltd., Airlines Xiamen. Eddy current testing for aircraft non-destructive testing: [S]. Beijing: China Science and Technology Press, 2006 (in Chinese).
27 福建省电力试验研究院,华东电力试验研究院. 汽轮机叶片涡流检验技术导则: [S]. 北京: 中国电力出版社, 2005.
  Fujian Electric Power Test Research Institute, East China Electric Power Test Research Institute. Technical guidelines for eddy current inspection of steam turbine blades: [S]. Beijing: China Electric Power Press, 2005 (in Chinese).
Outlines

/