Material Engineering and Mechanical Manufacturing

Modeling of high speed and high precision milling forces based on kinematics: Comprehensive modeling and experimental

  • Gang LI ,
  • Yu ZHANG ,
  • Si LI ,
  • Kunpeng ZHU
Expand
  • 1.Changzhou Institute of Advanced Manufacturing Technology,Changzhou 213164,China
    2.Advanced Manufacturing Technology Center,Institute of Intelligent Machinery,Hefei Institutes of Physical Science,Chinese Academy of Science,Changzhou 213164,China
    3.School of Machinery and Automation,Wuhan University of Science and Technology,Wuhan 430081,China
E-mail: zhukp@iamt.ac.cn

Received date: 2022-04-07

  Revised date: 2022-04-24

  Accepted date: 2022-06-10

  Online published: 2022-09-22

Supported by

National Key Technology Research and Development Program of China(2018YFB1703200)

Abstract

The milling force is one of the most important process parameters in high speed and high precision milling process. Accurate feedback of milling force information is very important to ensure the stability and precision of milling process. However, there are many factors that affect the milling force, and there is currently a lack of a comprehensive milling force model that considers multiple factors. Therefore, this paper focuses on research and comprehensively considers the influence of tool wear, tool run-out, and tool elastic deformation on the instantaneous undeformed cutting thickness. Furthermore, the relationship between elastic deformation and variety of entry and exit angles for each engaged flute is analyzed, and the instantaneous cutting thickness model is improved. Based on the kinematic analysis, the position of cutting edge is unified with the shape of premachined workpiece, and a comprehensive model of high speed milling force is established. To verify the accuracy and generality of the proposed model, a series of milling experiments under different parameters are carried out. The experimental results show that the predicted value of milling force is in good agreement with the experimental value, and the error value of milling force is less than 1%. By analyzing the relationship between tool wear per tooth and milling force, it is concluded that the milling force in the feed direction has the greatest impact on the tool wear. Therefore, the radial force component can well characterize the tool wear, so as to improve the milling accuracy and efficiency.

Cite this article

Gang LI , Yu ZHANG , Si LI , Kunpeng ZHU . Modeling of high speed and high precision milling forces based on kinematics: Comprehensive modeling and experimental[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(8) : 427261 -427261 . DOI: 10.7527/S1000-6893.2022.27261

References

1 DIKSHIT M K, PURI A B, MAITY A,et al. Determining cutting force coefficients from instantaneous cutting forces in ball end milling[J]. International Journal of Machining and Machinability of Materials201618(5/6):552.
2 YOON H S, EHMANN K F. Dynamics and stability of micro-cutting operations[J]. International Journal of Mechanical Sciences2016115-116:81-92.
3 NOURI M, FUSSELL B K, ZINITI B L,et al. Real-time tool wear monitoring in milling using a cutting condition independent method[J]. International Journal of Machine Tools and Manufacture201589:1-13.
4 ZHAO Z M, LIU X L, YUE C X,et al. Time-varying analytical model of ball-end milling tool wear in surface milling[J]. The International Journal of Advanced Manufacturing Technology2020108( 4):1109-1123.
5 CHEN W Q, HUO D H, TENG X Y,et al. Surface generation modelling for micro end milling considering the minimum chip thickness and tool runout[J]. Procedia CIRP201758:364-369.
6 DAVIM J P. Modern mechanical engineering:Research,development and education[M]. London:Springer Science & Business Media,2014:115-120.
7 ZHU K P, ZHANG Y. Modeling of the instantaneous milling force per tooth with tool run-out effect in high speed ball-end milling[J]. International Journal of Machine Tools and Manufacture2017118-119:37-48.
8 LI H Z, WU B. Development of a hybrid cutting force model for micro milling of brass[J]. International Journal of Mechanical Sciences2016115-116:586-595.
9 SINGH K K, KARTIK V, SINGH R. Stability modeling with dynamic run-out in high speed micromilling of Ti6Al4V[J]. International Journal of Mechanical Sciences2019150:677-690.
10 AFAZOV S M, RATCHEV S M, SEGAL J. Modelling and simulation of micro-milling cutting forces[J]. Journal of Materials Processing Technology2010210( 15):2154-2162.
11 LI J L, CAI X J, AN Q L,et al. A hybrid approach for cutting force prediction in flank milling based on analytical and 3D finite element method[J]. The International Journal of Advanced Manufacturing Technology2020110( 5):1601-1613.
12 JALILI SAFFAR R, RAZFAR M R, ZAREI O,et al. Simulation of three-dimension cutting force and tool deflection in the end milling operation based on finite element method[J]. Simulation Modelling Practice and Theory200816( 10):1677-1688.
13 WOJCIECHOWSKI S, MATUSZAK M, POWA?KA B,et al. Prediction of cutting forces during micro end milling considering chip thickness accumulation[J]. International Journal of Machine Tools and Manufacture2019147:103466.
14 BUDAK E, OZLU E, BAKIOGLU H,et al. Thermo-mechanical modeling of the third deformation zone in machining for prediction of cutting forces[J]. CIRP Annals201665( 1):121-124.
15 董永亨,李淑娟,李言,等. 基于改进Z-MAP算法的球头铣刀加工表面形貌仿真与试验研究[J]. 机械工程学报201753( 23):197-208.
  DONG Y H, LI S J, LI Y,et al. Simulation and experimental study of ball-end milling surface topography based on an improved Z-MAP algorithm[J]. Journal of Mechanical Engineering201753(23):197-208 (in Chinese).
16 JIA Z Y, GE J, MA J W,et al. A new cutting force prediction method in ball-end milling based on material properties for difficult-to-machine materials[J]. The International Journal of Advanced Manufacturing Technology201686(9):2807-2822.
17 LU X H, JIA Z Y, WANG X X, et al. Three-dimensional dynamic cutting forces prediction model during micro-milling nickel-based superalloy[J]. The International Journal of Advanced Manufacturing Technology201581( 9):2067-2086.
18 WAN M, WEN D Y, MA Y C,et al. On material separation and cutting force prediction in micro milling through involving the effect of dead metal zone[J]. International Journal of Machine Tools and Manufacture2019146:103452.
19 LI G, QU D, FENG W W,et al. Modeling and experimental study on the force of micro-milling titanium alloy based on tool runout[J]. The International Journal of Advanced Manufacturing Technology201687(1):1193-1202.
20 XIAN C, SHI Y Y, LUO J,et al. Milling force modeling for disc milling cutter of indexable three-sided inserts considering tool runout[J]. The International Journal of Advanced Manufacturing Technology2021115(7):2191-2204.
21 ZHANG X W, EHMANN K F, YU T B,et al. Cutting forces in micro-end-milling processes[J]. International Journal of Machine Tools and Manufacture2016107:21-40.
22 SAHOO P, PRATAP T, PATRA K. A hybrid modelling approach towards prediction of cutting forces in micro end milling of Ti-6Al-4V titanium alloy[J]. International Journal of Mechanical Sciences2019150:495-509.
23 ZHANG X, PAN X D, WANG G L,et al. Tool runout and single-edge cutting in micro-milling[J]. The International Journal of Advanced Manufacturing Technology201896(1):821-832.
24 ZHANG X W, YU T B, WANG W S. Prediction of cutting forces and instantaneous tool deflection in micro end milling by considering tool run-out[J]. International Journal of Mechanical Sciences2018136:124-133.
25 BAI Y, JIA Z Y, FU R,et al. Mechanical model for predicting thrust force with tool wear effects in drilling of unidirectional CFRP[J]. Composite Structures2021262:113601.
26 DUCROUX E, FROMENTIN G, VIPREY F,et al. New mechanistic cutting force model for milling additive manufactured Inconel 718 considering effects of tool wear evolution and actual tool geometry[J]. Journal of Manufacturing Processes202164:67-80.
27 SUN Y J, SUN J, LI J F,et al. Modeling of cutting force under the tool flank wear effect in end milling Ti6Al4V with solid carbide tool[J]. The International Journal of Advanced Manufacturing Technology201369(9):2545-2553.
28 ZHOU L, DENG B, PENG F Y,et al. Analytical modelling and experimental validation of micro-ball-end milling forces with progressive tool flank wear[J]. The International Journal of Advanced Manufacturing Technology2020108(9):3335-3349.
29 OLIAEI S N B, KARPAT Y. Influence of tool wear on machining forces and tool deflections during micro milling[J]. The International Journal of Advanced Manufacturing Technology201684(9):1963-1980.
30 岳彩旭,都建标,姜男,等. 考虑后刀面磨损及过缝冲击的拼接模具铣削力建模与实验研究[J]. 振动与冲击201938(17):284-291.
  YUE C X, DU J B, JIANG N,et al. Modeling and experimental research on milling force of splicing die considering rear face wear and slit impact[J]. Journal of Vibration and Shock201938(17):284-291 (in Chinese).
31 FU Z T, YANG W Y, WANG X L,et al. An analytical force model for ball-end milling based on a predictive machining theory considering cutter runout[J]. The International Journal of Advanced Manufacturing Technology201684(9): 2449-2460.
32 BAO W Y, TANSEL I N. Modeling micro-end-milling operations. Part I:analytical cutting force model[J]. International Journal of Machine Tools and Manufacture200040(15):2155-2173.
33 郭松. 刀具磨损引起的工件加工误差建模与补偿技术研究[D]. 南京:南京航空航天大学,2012:8-19.
  GUO S. Research on modeling and compensation of machining error induced by tool wear[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2012:8-19 (in Chinese).
34 袁美霞. 微径球头铣刀铣削微小结构加工精度影响机制研究[D]. 北京:北京理工大学,2016:17-47.
  YUAN M X. Research on machining precision of micro structure milled by microdiameter ball end milling cutter[D]. Beijing:Beijing Institute of Technology,2016:17-47 (in Chinese).
35 ZHU Z R, YAN R, PENG F Y,et al. Parametric chip thickness model based cutting forces estimation considering cutter runout of five-axis general end milling[J]. International Journal of Machine Tools and Manufacture2016101:35-51.
36 SUN C, ALTINTAS Y. Chatter free tool orientations in 5-axis ball-end milling[J]. International Journal of Machine Tools and Manufacture2016106:89-97.
37 GERMAIN D, FROMENTIN G, POULACHON G,et al. From large-scale to micromachining:a review of force prediction models[J]. Journal of Manufacturing Processes201315(3):389-401.
38 BUDAK E, ALTINTAS Y, ARMAREGO E. Prediction of milling force coefficients from orthogonal cutting date[J]. Journal of Manufacturing Science and Engineering1996118 (2):216-224.
Outlines

/