Fluid Mechanics and Flight Mechanics

Design of inward turning inlet with controlled Mach number under non-uniform inflow

  • Yongzhou LI ,
  • Di SUN ,
  • Renhua WANG ,
  • Kunyuan ZHANG
Expand
  • 1.College of Aircraft Engineering,Nanchang Hangkong University,Nanchang 330063,China
    2.AECC Aero Engine Control System Institute,Wuxi 214063,China
    3.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
E-mail: nuaa-2004@126.com

Received date: 2022-07-26

  Revised date: 2022-08-03

  Accepted date: 2022-08-26

  Online published: 2022-09-13

Supported by

National Natural Science Foundation of China(11702205);Jiangxi Province Innovation Leading Talent Project;Open Fund for Key Laboratory of Aeroengine Thermal Environment and Thermal Structure(CEPE2022005);Natural Science Foundation of Chongqing(cstc2020jcyj-msxmX0823)

Abstract

A design method of the inward turning inlet with controlled Mach number distribution under non-uniform inflow is proposed to meet the integrated design requirements of waverider and inlet of the hypersonic vehicle with the abdominal intake layout. The axisymmetric basic flow field is designed inversely by the rotational method of characteristics under the conditions that the Mach number distribution of the inflow and the wall are given at the same time. The inward turning inlet with the circular intake is designed by the streamline tracing technology and compared with the traditional inward turning inlet based on the uniform inflow. The numerical simulation results show that the basic flow field structure of the non-uniform inflow is consistent with expectation, which can control the Mach number distribution of the entire flow field, and its compression efficiency is higher than that of the traditional uniform inflow. The inlet with non-uniform inflow can maintain the wave structure of the basic flow field and capture the full flow at the deign point. The overall performance of the inlet with non-uniform inflow under viscous conditions is satisfactory and higher than that of the inlet with uniform inflow under the same inflow condition. Therefore, the design method is feasible and provides an innovative approach for hypersonic foredody/inlet integrated design.

Cite this article

Yongzhou LI , Di SUN , Renhua WANG , Kunyuan ZHANG . Design of inward turning inlet with controlled Mach number under non-uniform inflow[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(12) : 127857 -127857 . DOI: 10.7527/S1000-6893.2022.27857

References

1 蔡伊雯, 金志光, 周建兴, 等. 一种多热力循环组合发动机进气道设计方案[J]. 航空学报202041(11): 123745.
  CAI Y W. JIN Z G. ZHOU J X.et al. Design scheme of combined multiple thermodynamic cycle engine inlet[J]. Acta Aeronautica et Astronautica Sinica202041(11): 123745 (in Chinese).
2 LI Y Q, YOU Y C, HAN W Q, et al. An innovative integration concept for forebody and two-dimensional hypersonic inlet with controllable wall pressure distribution: AIAA-2015-3592[R]. Reston: AIAA, 2015.
3 ZHANG L, ZHANG K Y, WANG L. Experimental study of three-dimensional sidewall compression inlet designed on wall Mach number linear distribution curved surface compression system: AIAA-2015-3669[R]. Reston: AIAA, 2015.
4 BILLIG F S, JACOBSEN L S. Comparison of planar and axisymmetric flow paths for hydrogen fueled space access vehicle: AIAA-2003-4407[R]. Reston: AIAA, 2003.
5 ZHANG K Y. Research progress of hypersonic inlet inverse design based on curved shock compression system: AIAA-2015-3647[R]. Reston: AIAA, 2015.
6 王卫星, 朱婷, 张仁涛, 等. 高超声速内转式进气道型面流场重构[J]. 航空学报202041(3): 123493.
  WANG W X, ZHU T, ZHANG R T . et al. Flow field reconstruction of hypersonic inward turning inlet based on configurations[J]. Acta Aeronautica et Astronautica Sinica202041(3): 123493 (in Chinese).
7 张航, 孙姝, 黄河峡, 等. 高超声速双模块内转式进气道的流动特性研究-PartⅠ:设计状态[J]. 推进技术202243(7):101-109.
  ZHANG H, SUN S, HUANG H X, et al. Flowfield of hypersonic bimodal inward-turning inlet-part i: design point[J]. Journal of Propulsion Technology202243(7):101-109 (in Chinese).
8 蔡泽君, 胡占仓, 余联郴, 等. XTER内收缩组合进气道设计理念及气动特性[J]. 空气动力学学报202240(1): 218-231.
  CAI Z J, HU Z C, YU L C, et al. Design concept and aerodynamic characteristics of XTER TBCC inlet[J]. Acta Aerodynamica Sinica202240(1): 218-231 (in Chinese).
9 BOYCE R, GERARD S, PAULL A. The HyShot scramjet flight experiment-flight data and CFD calculations compared: AIAA-2003-7029[R]. Reston: AIAA, 2003.
10 M?LDER S, SZPIRO J. Busemman inlet for hypersonic speeds[J]. Journal of Spacecraft and Rockets19663(8): 1303-1304.
11 SMART M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. Journal of Power and Propulsion199915(3): 408-416.
12 MATTHEWS A J, JONES T V. Design and test of a modular waverider hypersonic intake[J]. Journal of Propulsion and Power200622(4): 913-920.
13 尤延铖, 梁德旺. 基于内乘波概念的三维变截面高超声速进气道[J]. 中国科学E辑: 技术科学200939(8): 1483-1494.
  YOU Y C, LIANG D W. Design concept of three dimensional section controllable internal waverider hypersonic inlet[J]. Science in China Series E:Technological Sciences200939(8): 1483-1494 (in Chinese).
14 YUE L J, XIAO Y B, CHEN L H, et al. Design of base flow for streamline-traced hypersonic inlet: AIAA-2009-7422[R]. Reston: AIAA, 2009.
15 南向军,张堃元,金志光,等. 矩形转圆形高超声速内收缩进气道数值及实验研究[J]. 航空学报201132(6): 988-996.
  NAN X J, ZHANG K Y, JIN Z G, et al. Numerical and experimental investigation of hypersonic inward turning inlets with rectangular to circular shape transition[J]. Acta Aeronautica et Astronautica Sinica201132(6): 988-996 (in Chinese).
16 李永洲,张堃元,南向军. 基于马赫数分布规律可控概念的高超声速内收缩进气道设计[J]. 航空动力学报201227(11): 2484-2491.
  LI Y Z, ZHANG K Y, NAN X J. Design concept of controllable Mach number distribution hypersonic inward turning inlets[J]. Journal of Aerospace Power201227(11): 2484-2491 (in Chinese).
17 SOBIECZKY H, ZORES B, WANG Z. High speed flow design using the theory of osculating cones and axisymmetric flows[J]. Chinese Journal of Aeronautics199912(1): 1-8.
18 乔文友, 余安远. 内转式进气道与飞行器前体的一体化设计综述[J]. 实验流体力学201933(3): 43-59.
  QIAO W J, YU A Y. Overview on integrated design of inward-turning inlet with aircraft forebody[J]. Journal of Experiments in Fluid Mechanics201933(3):43-59 (in Chinese).
19 张文浩, 柳军, 丁峰. 内转式进气道/冯·卡门乘波体一体化设计方法[J]. 航空学报202041(3): 123502.
  ZHANG W H, LIU J, DING F. Integrated design method of inward turning inlet /Von Karman waverider[J]. Acta Aeronautica et Astronautica Sinica202041(3): 123502 (in Chinese).
20 贺旭照, 卫锋, 刘福军, 等. 最小波阻锥导乘波体和三维内转式进气道一体化设计[J]. 空气动力学学报202240(1): 77-83.
  HE X Z, WEI F LIU F J, et al. Integrated design of minimal wave drag cone-derived waveriders and three-dimensional inward turning inlets[J]. Acta Aerodynamica Sinica40(1): 77-83 (in Chinese).
21 LAWING P L, JOHNSON C B. Inlet boundary-layer shapes on four aircraft forebodies at Mach 6[J]. Journal of Aircraft197815(1): 62-63.
22 JOHNSON C B, LAWING P L. Mach 6 flow field survey at the engine inlet of a research airplane[J]. Journal of Aircraft197714(4): 412-414.
23 EKOTO I W, BOWERSOX D W B. Planar measurements of supersonic boundary layers with curvature driven pressure gradients: AIAA-2007-1137[R]. Reston: AIAA, 2007.
24 LEWIS M J, ASTINGS D E. Application of compound compressible flow to nonuniformities in hypersonic propulsion systems[J]. Journal of Propulsion and Power19895(5):626-634.
25 张堃元, 萧旭东, 徐辉. 高超侧压式进气道参数分析及试验研究[J]. 推进技术199516(6): 20-25.
  ZHANG K Y, XIAO X D, XU H. Parametric analysis and experimental investigation on sidewall compression inlet[J]. Journal of Propulsion Technology199516(6): 20-25 (in Chinese).
26 高雄. 超声速非均匀流模拟方法研究[D]. 南京:南京航空航天大学, 2009: 21-39.
  GAO X. Investigation of supersonic non-uniform flow simulation method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009: 21-39 (in Chinese).
27 方兴军. 控制出口速度分布的超声速内流通道反设计[D]. 南京:南京航空航天大学,2012.
  FANG X J. inverse design of supersonic internal flow path based on given outflow velocity profile[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
28 周航, 金志光. 非均匀来流下三维激波反问题的微元密切轴对称解法[J]. 航空学报202041(12): 124035.
  ZHOU H, JIN Z G. Micro osculating axisymmetric flow method for 3D shock wave design under nonuniform flows[J]. Acta Aeronautica et Astronautica Sinica202041(12): 124035 (in Chinese).
29 李永洲, 张堃元. 基于马赫数分布可控曲面外/内锥形基准流场的前体/进气道一体化设计[J]. 航空学报201536(1):289-301.
  LI Y Z, ZHANU K Y. Integrated design of forebody and inlet based on external and internal conical basic flow field with controlled Mach number distribution surface[J]. Acta Aeronautica et Astronautica Sinica201536(1): 289-301 (in Chinese).
30 DRAYNA T W, NOMPELIS I, CANDLER G V. Hypersonic inward turning inlets: design and optimization: AIAA-2006-297[R]. Reston: AIAA, 2006.
31 李永洲, 张堃元, 孙迪. 马赫数可控的方转圆高超声速内收缩进气道试验研究[J]. 航空学报201637(10): 2970-2979.
  LI Y Z, ZHANG K Y, SUN D. Experimental investigation on a hypersonic inward turning inlet of rectangular-to-circular shape with controlled Mach number distribution[J]. Acta Aeronautica et Astronautica Sinica201637(10): 2970-2979 (in Chinese).
32 王翼. 高超声速进气道启动问题研究[D]. 长沙:国防科学技术大学研究生院, 2008: 27-30.
  WANG Y. Investigation on the starting characteristics of hypersonic inlet[D]. Changsha: Graduate School of National University of Defense Technology, 2008: 27-30 (in Chinese).
Outlines

/