Electronics and Electrical Engineering and Control

L/C dual-band navigation signal modulation mode and performance evaluation of BeiDou system

  • Yude NI ,
  • Mohan YI ,
  • Ruihua LIU
Expand
  • College of Electronic & Information and Automation,Civil Aviation University of China,Tianjin  300300,China
E-mail: rhliu_cauc@163.com

Received date: 2022-07-07

  Revised date: 2022-08-07

  Accepted date: 2022-09-06

  Online published: 2022-09-13

Supported by

National Key Research and Development Project(2016YFB0502402)

Abstract

Large interval L/C dual-band navigation can significantly improve positioning accuracy and robustness, and will become the development trend of high precision satellite navigation system in the future. To reduce the complexity of dual-frequency terminals, a universal modulation scheme is designed, which not only meets the spectrum compatibility constraints of L/C-band, but also has good navigation performance. A combination of Orthogonal Frequency Division Multiplexing-Continuous Phase Modulation (OFDM-CPM) is proposed for L/C dual-band navigation. OFDM-CPM signals with the modulation index h=0.5 and the correlation length L consistent with the number of OFDM-CPM symbols are selected as L/C dual-band candidate navigation signals. Dual-frequency points are set, and the basic navigation performance indicators including compatibility, code tracking accuracy and anti-multipath interference are evaluated. The results show that in L-band, OFDM-CPM(15) has excellent code tracking performance and anti-multipath ability, and is easier to coexist with other candidate signals. In C-band, OFDM-CPM(10) can well take into account the out-of-band constraint and navigation performance requirements of C-band signals, and has the best performance in code tracking accuracy and anti-multipath interference, providing a choice for the design of navigation signal system of BDS in the future.

Cite this article

Yude NI , Mohan YI , Ruihua LIU . L/C dual-band navigation signal modulation mode and performance evaluation of BeiDou system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(12) : 327775 -327775 . DOI: 10.7527/S1000-6893.2022.27775

References

1 SCHWEIKERT R, WRZ T, GAUDENZI R D, et al. New signal structures for future GNSS[C]∥Sixth International Mobile Satellite Conference. 1999.
2 HEIN G W, AVILA-RODRIGUEZ J A, WALLNER S, et al. Envisioning a future GNSS system of systems-part1[J]. Inside GNSS20072(5-6): 58-67.
3 梁姗. 多GNSS环境下卫星导航信号体制研究与设计[D]. 成都: 电子科技大学, 2016: 44.
  LIANG S. Satellite navigation signal system research and design under the environment of multiple GNSS[D]. Chengdu: University of Electronic Science and Technology of China, 2016: 44 (in Chinese).
4 European Radiocommunications Of?ce. Main issues, European and other regional positions, results (Final Report)[C]∥World Radiocomunication Conferences-2000. 2000: 7.
5 于兴旺. 多频GNSS精密定位理论与方法研究[D]. 武汉: 武汉大学, 2011: 5.
  YU X W. Multi-frequency GNSS precise positioning theory and method research[D]. Wuhan: Wuhan University, 2011: 5 (in Chinese).
6 COLZI E, LOPEZ-RISUE?O G, SAMSON J, et al. Assessment of the feasibility of GNSS in C-band[C]∥ 26th International Communications Satellite Systems Conference (ICSSC). Reston: AIAA, 2008: 1-15.
7 秦鹏霄. S频段信号的研究[C]∥第四届中国卫星导航学术年会, 2013: 17-21.
  QIN P X. The research of the signal in the S frequency band[C]∥The 4th China Satellite Navigation Conference, 2013: 17-21.
8 AVILA-RODRIGUEZ J A, WALLNER S, HEIN G W, et al. A vision on new frequencies, signals and concepts for future GNSS systems[C]∥ION GNSS International Technical Meeting of the Satellite Division, 2007: 517-534.
9 ISSLER J L, PAONNI M, EISSFELLER B. Toward centimetric positioning thanks to L- and S-Band GNSS and to meta-GNSS signals[C]∥ 2010 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC). Piscataway: IEEE Press, 2011: 1-8.
10 SCHMITZ-PEIFFER A, STOPFKUCHEN L, SOUALLE F, et al. Assessment on the use of C-Band for GNSS within the European GNSS evolution programme[C]∥Proceedings of ION GNSS, 2008: 2189-2198.
11 AVILA-RODRIGUEZ J A, WALLNER S, WON J H, et al. Study on a GALILEO signal and service plan for C-band[C]∥Proceedings of ION GNSS, 2008: 2516-2529.
12 IRSIGLER M, HEIN G W, EISSFELLER B, et al. Aspects of C-band satellite navigation: Signal propagation and satellite signal tracking[C]∥Proceedings of the European Navigation Conference. 2002: 17-30.
13 HENKEL P, GüNTHER C. Joint L-/C-band code and carrier phase linear combinations for Galileo[J]. International Journal of Navigation and Observation2008: 1-8.
14 朱亮, 陆明泉, 冯振明. 北斗系统C频段导航信号的波形设计[J]. 电子技术应用201238(8): 89-92.
  ZHU L, LU M Q, FENG Z M. Waveform design for Beidou C band navigation signal[J]. Application of Electronic Technique201238(8): 89-92 (in Chinese).
15 刘美红. 卫星导航C频段信号体制研究[D]. 上海: 上海交通大学, 2016.
  LIU M H. Study on C band satellite navigation signal architecture[D]. Shanghai: Shanghai Jiao Tong University, 2016 (in Chinese).
16 夏轩. 高谱效导航信号调制及伪码设计[D]. 武汉: 华中科技大学, 2019.
  XIA X. Spectral efficient navigation signal modulation and PN code design[D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese).
17 牛满仓. 多频段GNSS信号兼容技术研究[D]. 上海: 上海交通大学, 2014.
  NIU M C. Research on GNSS multi-frequency signal compatibility[D]. Shanghai: Shanghai Jiao Tong University, 2014 (in Chinese).
18 孙岩博, 薛睿, 王盾, 等. L/C双频段联合导航信号中通用调制方案研究[J]. 哈尔滨工程大学学报201839(4): 778-784.
  SUN Y B, XUE R, WANG D, et al. General modulation scheme for L/C dual-frequency combined navigation signal[J]. Journal of Harbin Engineering University201839(4): 778-784 (in Chinese).
19 孙岩博. 基于连续相位调制的多波段导航信号模型研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
  SUN Y B. Research on multiband navigation signal model based on continuous phase modulation[D]. Harbin: Harbin Engineering University, 2018 (in Chinese).
20 马晓玉. 导航信号波形性能综合评估方法研究[D]. 武汉: 华中科技大学, 2013: 43.
  MA X Y. The research of comprehensive evaluation method for navigation signal waveforms performance[D]. Wuhan: Huazhong University of Science and Technology, 2013: 43 (in Chinese).
21 TASADDUQ I A, RAO R K. OFDM-CPM signals[J]. Electronics Letters200238(2): 80.
22 薛睿. 国之重器出版工程 多波段卫星导航信号设计理论与关键技术[M]. 北京: 电子工业出版社, 2020: 73.
  XUE R. Design theory and key technology of multiband satellite navigation signal[M]. Beijing: Publishing House of Electronics Industry, 2020: 73 (in Chinese).
23 AULIN T, RYDBECK N, SUNDBERG C E. Continuous phase modulation - part II: Partial response signaling[J]. IEEE Transactions on Communications198129(3): 210-225.
24 International Telecommunication Union. A coordination methodology for RNSS inter-system interference estimation: [S]. 2007.
25 BETZ J W, GOLDSTEIN D B. Candidate designs for an additional civil signal in GPS spectral bands[C]∥In Proceedings of the National Technical Meeting-Institute of Navigation, 2002: 622-631.
26 SOUALLE F, BURGER T. Radio frequency compatibility criterion for code tracking performance[C]∥ION GNSS 20th International Technical Meeting of the Satellite Division. Virginia: Institute of Navigation, 2007: 1201-1210.
27 BETZ J W, KOLODZIEJSKI K R. Extended theory of early-late code tracking for a bandlimited GPS receiver[J]. Navigation200047(3): 211-226.
28 International Telecommunication Union. Radio regulations: 2022 Volume 1-Articles: No.5.443B [S]. 2020: 127.
29 International Telecommunication Union: Protection of the radio astronomy service in the frequency band 4990-5000 MHz from unwanted emissions of the radio navigation-satellite service (space-to-Earth) operating in the frequency band 5010-5030: WRC-15 MHz [S]. Geneva: International Telecommunication Union, 2015: 503.
30 IRSIGLER M, HEIN G W, SCHMITZ-PEIFFER A. Use of C-Band frequencies for satellite navigation: Benefits and drawbacks[J]. GPS Solutions20048(3): 119-139.
31 王蕊. OFDM-CPM联合调制技术性能分析与研究[D]. 西安: 西安电子科技大学, 2012.
  WANG R. Analysis and research on performance of OFDM-CPM modulation[D]. Xi’an: Xidian University, 2012 (in Chinese).
Outlines

/