ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Stability performance of stiffening rings on large CFRP thin⁃walled tube trusses
Received date: 2021-06-30
Revised date: 2021-07-28
Accepted date: 2021-08-29
Online published: 2022-09-13
Supported by
Key Research and Development Program of the Ministry of Science and Technology(2016YFB1200200)
To further study the stability performance of the CFRP thin-walled tube truss stiffening ring, the key structural component of a semi-rigid stratospheric airship, the eigenvalue buckling analysis of the initial configuration and the configuration with different tension displacements is carried out. Then, considering the initial prestress and initial geometric imperfections, we examine the nonlinear stability of the whole process of the pre-tensioning condition and the stability of the configuration with different tension displacements using the temperature load. Finally, the initial geometric imperfections are analyzed through calculation. The research shows that the local buckling occurs first; the structure is sensitive to the initial geometric imperfections, and the critical buckling load of the structure is reduced by 42.91% after considering the initial geometric imperfections. The critical buckling load factor of the structure decreases linearly with the increase of initial prestress and tension displacement, and the ratio of the maximum stress of the upper and lower radial cables to their heights exhibits the same trend. The internal force distribution of radial cables is closely related to the form of geometric imperfections during structural buckling, and the multi-model combined imperfections can better reflect the real geometric imperfections of the structure. This paper has important reference value for the design, assembly and integration of CFRP thin-walled tube stiffening rings and similar spoke tension structures.
Xiang MI , Wujun CHEN , Yibei ZHANG , Shiping LI , Xiaohui HUANG . Stability performance of stiffening rings on large CFRP thin⁃walled tube trusses[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(12) : 227738 -227738 . DOI: 10.7527/S1000-6893.2022.27738
1 | WU X T, MOOG C H, MARQUEZ-MARTINEZ L A, et al. Full model of a buoyancy-driven airship and its control in the vertical plane[J]. Aerospace Science and Technology, 2013, 26(1): 138-152. |
2 | MANIKANDAN M, RAJKUMAR S P. Research and advancements in hybrid airships—A review[J]. Progress in Aerospace Sciences, 2021, 127: 100741. |
3 | HUNT C J, MORABITO F, GRACE C, et al. A review of composite lattice structures[J]. Composite Structures, 2022, 284: 115120. |
4 | 熊波. 全碳纤维复合材料桁架制备与可靠性分析方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 1-7. |
XIONG B. Research on fabrication and reliability analysis methods of all carbon fibre composite truss[D]. Harbin: Harbin Institute of Technology, 2017: 1-7 (in Chinese) . | |
5 | 王增加, 王希杰, 孔娜, 等. 弧形三角截面碳纤维复合材料桁架结构的研制[J]. 复合材料科学与工程, 2021(10): 116-119, 128. |
WANG Z J, WANG X J, KONG N, et al. Development of arc triangular cross-section CFRP structure truss[J]. Composites Science and Engineering, 2021(10): 116-119, 128 (in Chinese). | |
6 | 李元章, 鲁国富, 任三元, 等. 基于积木式的飞艇桁架式复合材料龙骨结构验证方法[J]. 复合材料科学与工程, 2020(1): 67-71. |
LI Y Z, LU G F, REN S Y, et al. Verification method for composite keel structure of airship truss based on building blocks[J]. Composites Science and Engineering, 2020(1): 67-71 (in Chinese). | |
7 | 赵达, 刘东旭, 孙康文, 等. 平流层飞艇研制现状、技术难点及发展趋势[J]. 航空学报, 2016, 37(1): 45-56. |
ZHAO D, LIU D X, SUN K W, et al. Research status, technical difficulties and development trend of stratospheric airship[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 45-56 (in Chinese). | |
8 | 谭惠丰, 王超, 王长国. 实现结构轻量化的新型平流层飞艇研究进展[J]. 航空学报, 2010, 31(2): 257-264. |
TAN H F, WANG C, WANG C G. Progress of new type stratospheric airships for realization of lightweight[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 257-264 (in Chinese). | |
9 | 章令晖, 李甲申, 王琦洁, 等. 航天器用复合材料桁架结构研究进展[J]. 纤维复合材料, 2013, 30(4): 62-68. |
ZHANG L H, LI J S, WANG Q J, et al. The progress of research on composite truss for spacecraft[J]. Fiber Composites, 2013, 30(4): 62-68 (in Chinese). | |
10 | HUNT C J, WISNOM M R, WOODS B K S. WrapToR composite truss structures: Improved process and structural efficiency[J]. Composite Structures, 2019, 230: 111467. |
11 | HUNT C J, ZHAO Y, WISNOM M R, et al. WrapToR composite truss structures: Measurement and modelling of mechanical response[J]. Composite Structures, 2020, 254: 112834. |
12 | ZHU R, LI F, CHEN Y, et al. The effect of tube-in-tube buckling-restrained device on performance of hybrid PFRP-Aluminium space truss structure[J]. Composite Structures, 2021, 260: 113260. |
13 | ASAY B. Bending behavior of carbon/epoxy composite IsoBeam structures[D]. Provo:Brigham Young University, 2015. |
14 | WOODS B K S, HILL I, FRISWELL M I. Ultra-efficient wound composite truss structures[J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 111-124. |
15 | PFEIL M S, TEIXEIRA A M A J, BATTISTA R C. Experimental tests on GFRP truss modules for dismountable bridges[J]. Composite Structures, 2009, 89(1): 70-76. |
16 | 鞠苏. 复合材料桁架弯曲特性与非线性约束优化设计[D]. 长沙: 国防科技大学, 2011: 91-110. |
JU S. Flexural performance and design optimization with nonlinear constraints of a composite truss structure[D]. Changsha: National University of Defense Technology, 2011: 91-110 (in Chinese) . | |
17 | 南波. 半硬式平流层飞艇骨架精细化分析与轻量化设计[D]. 哈尔滨: 哈尔滨工业大学, 2015: 21-38. |
NAN B. Refined analysis and light-weight design of semi-rigid stratospheric airship frame structures[D]. Harbin: Harbin Institute of Technology, 2015: 21-38 (in Chinese) . | |
18 | KIM H. Structural performance of spoke wheel roof systems[D].Cambridge:Massachusetts Institute of Technology, 2017:12-21. |
19 | LU J, ZHANG H, WU X. Experimental study on collapse behaviour of truss string structures under cable rupture[J]. Journal of Constructional Steel Research, 2021, 185: 106864. |
20 | LUO X Q, ZHANG Q L, CHEN L. Form-finding of a mixed structure with cable nets and tubular trusses[J]. Journal of Constructional Steel Research, 2012, 72: 192-202. |
21 | 王小盾, 石永久, 王元清. 摩天轮结构及其工程应用研究[J]. 建筑科学与工程学报, 2005, 22(3): 30-35. |
WANG X D, SHI Y J, WANG Y Q. Research on structure and engineering application of FERRIS wheel[J]. Journal of Architecture and Civil Engineering, 2005, 22(3): 30-35 (in Chinese). | |
22 | 赵奋, 丁洁民, 杨晖柱, 等. 柔性巨型摩天轮结构的非线性分析[J]. 同济大学学报(自然科学版), 2011, 39(5): 675-681. |
ZHAO F, DING J M, YANG H Z, et al. Nonlinear analysis of flexible giant Ferris wheel[J]. Journal of Tongji University (Natural Science), 2011, 39(5): 675-681 (in Chinese). | |
23 | 朱慈勉, 吴宇清. 计算结构力学[M]. 北京: 科学出版社, 2009: 169-170. |
ZHU C M, WU Y Q. Computational structural mechanics[M]. Beijing: Science Press, 2009: 169-170 (in Chinese). | |
24 | 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003: 639-640. |
WANG X C. Finite element method[M]. Beijing: Tsinghua University Press, 2003: 639-640 (in Chinese). | |
25 | WANG J, LI H N, FU X,et al. Geometric imperfections and ultimate capacity analysis of a steel lattice transmission tower[J]. Journal of Constructional Steel Research, 2021, 183: 106734. |
26 | ZHU S, OHSAKI M, GUO X. Prediction of non-linear buckling load of imperfect reticulated shell using modified consistent imperfection and machine learning[J]. Engineering Structures, 2021, 226: 111374. |
/
〈 |
|
〉 |