ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Effect of active ejection gas parameters on thermal environment of plate and air rudder
Received date: 2022-06-30
Revised date: 2022-07-28
Accepted date: 2022-08-24
Online published: 2022-09-13
For the flat plate air rudder model, under the conditions of Mach number of 10 and unit Reynolds number of 2.1×106/m in the shock wind tunnel, the regulation of hypersonic flow field and the law of heat flux reduction by actively ejecting gas were experimentally studied using schlieren and heat flux sensors. The shock wave structure of the flow field and the heat flux on the model surface were obtained under the conditions of actively ejecting gas at different Mach numbers and pressures. The experimental data show that the interference heat flux of the flat plate and the air rudder can be reduced by actively ejecting the air flow field upstream of the air rudder; when the Mach number of the ejected gas is 2, the heat flux reduction effect reaches 45%, and when the Mach number of the ejected gas is 4, the heat flux reduction effect reaches more than 70%; with the increase of the Mach number and pressure of the ejected gas, the better the heat flux reduction effect of the flat plate, rudder tip, rudder surface and rudder shaft below the ejected nozzle is, and the amplitude and area of the heat flux reduction will increase; by increasing the pressure of the ejected gas, the flow field control effect of the ejected gas at low Mach number is the same as that of the ejected gas at high Mach number; the change of the boundary layer flow pattern and thickness caused by the active injection of gas is the main control factor to determine the heat flux reduction effect of the flat air rudder; in the hypersonic flow field, the ejected gas at a lower Mach number can change the flow pattern downstream, but only the ejected gas at a higher Mach number or pressure can produce a better heat flux reduction effect downstream; from the point of view of gas flow demand, it is suggested to adopt the ejector outlet parameters of “high Mach number, low pressure” for the design of the ejector system.
Key words: active ejection; plate; air rudder; aeroheating; hypersonic
Chunsheng NIE , Ye YUAN , Wei MA , Zhanwei CAO , Mingxing YU . Effect of active ejection gas parameters on thermal environment of plate and air rudder[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(S2) : 170 -179 . DOI: 10.7527/S1000-6893.2022.27736
1 | 李素循. 激波与边界层主导的复杂流动[M]. 北京: 科学出版社, 2007: 10-24. |
LI S X. Complex flow dominated by shock wave and boundary layer[M]. Beijing: Science Press, 2007: 10-24 (in Chinese). | |
2 | 李芳勇, 杨春信, 张兴娟. 高超声速飞行器舵轴热控方案设计[J]. 战术导弹技术, 2018(4): 6-12. |
LI F Y, YANG C X, ZHANG X J. Thermal control design on a shaft in the hypersonic vehicle[J]. Tactical Missile Technology, 2018(4): 6-12 (in Chinese). | |
3 | 吴宁宁, 康宏琳, 罗金玲. 高速飞行器翼舵缝隙激波风洞精细测热试验研究[J]. 空气动力学学报, 2019, 37(1): 133-139. |
WU N N, KANG H L, LUO J L. Experimental study on fine thermal measurement of high-speed aircraft wing rudder gapin shock wave tunnel[J]. Acta Aerodynamica Sinica, 2019, 37(1): 133-139 (in Chinese). | |
4 | 中国人民解放军总装备部军事训练教材编辑工作委员会. 高超声速气动热和热防护[M]. 北京: 国防工业出版社, 2003: 100-150. |
Editorial Committe of Military Training Textbooks of the General Equipment Department of the Chinese People's Liberation Army. Hypersonic aerothermodynamic and thermal protection[M]. Beijing: National Defense Industry Press, 2003: 100-150 (in Chinese). | |
5 | 李艳丽, 李素循. 高超声速绕钝舵层流干扰流场特性研究[J]. 宇航学报, 2007, 28(6): 1472-1477. |
LI Y L, LI S X. Investigation of interactive hypersonic laminar flow over blunt fin[J]. Journal of Astronautics, 2007, 28(6): 1472-1477 (in Chinese). | |
6 | 熊宴斌. 超声速主流条件发汗冷却的流动和传热机理研究[D]. 北京: 清华大学, 2013: 9-20. |
XIONG Y B. Study of the mechanism of flow and heat transfer on supersonic transpiration cooling[D]. Beijing: Tsinghua University, 2013: 9-20 (in Chinese). | |
7 | 时骏祥. 发散冷却基础问题的理论研究[D]. 合肥: 中国科学技术大学, 2009: 10-25. |
SHI J X. Theoretic investigation on basic problems of transpiration cooling[D]. Hefei: University of Science and Technology of China, 2009: 10-25 (in Chinese). | |
8 | 雷云涛, 林智荣, 袁新. 不同吹风比下平板气膜冷却数值模拟[J]. 清华大学学报(自然科学版), 2008, 48(8): 1331-1334. |
LEI Y T, LIN Z R, YUAN X. Numerical study of film cooling of a flat plate at different blowing ratios[J]. Journal of Tsinghua University (Science and Technology), 2008, 48(8): 1331-1334 (in Chinese). | |
9 | 丁浩林, 易仕和, 赵鑫海, 等. 带超声速气膜高超声速光学头罩气动光学效应抑制试验[J]. 气体物理, 2018, 3(6): 26-34. |
DING H L, YI S H, ZHAO X H, et al. Experimental investigation on aero-optics imitation of hypersonic optical dome with supersonic film[J]. Physics of Gases, 2018, 3(6): 26-34 (in Chinese). | |
10 | 韩启祥, 何小明, 谈浩元,等. 超音速射流气膜冷却效果的试验研究[J]. 南京航空航天大学学报, 1998, 30(5): 491-495. |
HAN Q X, HE X M, TAN H Y, et al. Experimental study on film cooling with supersonic injection[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1998, 30(5): 491-495 (in Chinese). | |
11 | 付佳. 瞬态热流测试技术及超声速气膜冷却的试验研究[D]. 长沙: 国防科学技术大学, 2012. |
FU J. Experimental study on transient heat flux measurement and supersonic film cooling[D]. Changsha: National University of Defense Technology, 2012 (in Chinese). | |
12 | 袁野, 曹占伟, 马伟, 等. 主动引射冷却对空气舵热环境影响的试验研究[J]. 导弹与航天运载技术, 2021(6): 48-51. |
YUAN Y, CAO Z W, MA W, et al. Experimental research on the influence of the active ejection cooling on the thermal environment of the air rudder[J]. Missiles and Space Vehicles, 2021(6): 48-51 (in Chinese). | |
13 | 谭杰, 孙晓峰, 刘芙群, 等. 高超声速平板/空气舵热环境数值模拟研究[J]. 空气动力学学报, 2019, 37(1): 153-159. |
TAN J, SUN X F, LIU F Q, et al. Numerical simulation of aerodynamic heating environment of a hypersonic plate/rudder configuration[J]. Acta Aerodynamica Sinica, 2019, 37(1): 153-159 (in Chinese). | |
14 | 陈星, 宫建, 师军, 等. 尖前缘驻点热流测量试验研究[C]?∥第十五届全国激波与激波管学术会议论文集(下册). 北京: 中国学术期刊电子出版社, 2012: 127-133. |
CHEN X, GONG J, SHI J, et al. Experimental study of stagnation-point heat transfer measurement on sharp leading edges[C]?∥Proceedings of the 15th Chinese National Symposium on Shock Waves(Volume 2). Beijing: China Academic Journal Electronic Publishing House, 2012: 127-133 (in Chinese). | |
15 | 易仕和, 赵玉新, 何霖. 超声速与高超声速喷管设计[M]. 北京: 国防工业出版社, 2013: 60-150. |
YI S H, ZHAO Y X, HE L. Supersonic and hypersonic nozzle design[M]. Beijing: National Defense Industry Press, 2013: 60-150 (in Chinese). | |
16 | 曾磊, 石友安, 孔荣宗, 等. 薄膜电阻温度计原理性误差分析及数据处理方法研究[J]. 实验流体力学, 2011, 25(1): 79-83. |
ZENG L, SHI Y A, KONG R Z, et al. Study on principle error analysis and data processing method of thin film resistance thermometer[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(1): 79-83 (in Chinese). | |
17 | LI Q, NIE L, ZHANG K L, et al. Experimental investigation on aero-heating of rudder shaft within laminar/turbulent hypersonic boundary layers[J]. Chinese Journal of Aeronautics, 2019, 32(5): 1215-1221. |
/
〈 |
|
〉 |