Reviews

Status and development of laminar flow wing design technology

  • DENG Yiju ,
  • DUAN Zhuoyi ,
  • AI Mengqi
Expand
  • Department of General and Aerodynamic Design, AVIC The First Aircraft Institute, Xi'an 710089, China

Received date: 2021-12-10

  Revised date: 2021-12-23

  Online published: 2022-09-13

Abstract

The importance and necessity of aircraft drag reduction design are emphasized by analyzing the target of aircraft drag reduction proposed by green aviation, and the laminar wing technology is considered an important approach to aircraft drag reduction. After reviewing the development of laminar wing design, research, and verification, this paper identifies the gap and technical problems between the laminar wing technology and the aircraft design industry. The potential and development direction of the laminar wing technology are analyzed, and the feasibility of this technology in future aircraft design evaluated.

Cite this article

DENG Yiju , DUAN Zhuoyi , AI Mengqi . Status and development of laminar flow wing design technology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(11) : 526778 -526778 . DOI: 10.7527/S1000-6893.2021.26778

References

[1] Advisory Council for Aeronautics Research in Europe (ACARE). Aeronautics and air transport:Beyond vision 2020(Towards 2050).[EB/OL]. (2010-06-10)[2021-09-20]. http://www.acare4europe.com/.
[2] International Air Transport Association. "Vision 2050-Report"[R]. Montreal:IATA, 2011.
[3] 张正国. NASA未来先进民用飞机与推进系统设计[J]. 国际航空, 2010(2):56-59. ZHANG Z G. Advanced civil aircraft and propulsion system design in NASA[J]. International Aviation, 2010(2):56-59(in Chinese).
[4] COOPER J E. From blue skies to green skies:How structural dynamics and uncertainty quantification can benefit future aircraft desig[C]//Proceedings of ISMA2014, 2014.
[5] 朱自强, 王晓璐, 吴宗成, 等. 民机设计中的多学科优化和数值模拟[J]. 航空学报, 2007, 28(1):1-13. ZHU Z Q, WANG X L, WU Z C, et al. Multi-disciplinary optimization and numerical simulation in civil aircraft design[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):1-13(in Chinese).
[6] 刘沛清, 张雯, 郭昊. 大型运输机的减阻技术[J]. 力学与实践, 2018, 40(2):129-139, 154. LIU P Q, ZHANG W, GUO H. Drag reduction technique for large transport aircraft[J]. Mechanics in Engineering, 2018, 40(2):129-139, 154(in Chinese).
[7] SCHRAUF G. Status and perspectives of laminar flow[J]. The Aeronautical Journal, 2005, 109(1102):639-644.
[8] 朱自强, 吴宗成. 现代飞机设计空气动力学[M]. 北京:北京航空航天大学出版社, 2005. ZHU Z Q, WU Z C. Aerodynamics of modern aircraft design[M]. Beijing:Beijing University of Aeronautics & Astronautics Press, 2005(in Chinese).
[9] HORSTMANN K H. TELFONA-Contribution to laminar wing development for future transport aircraft[C]//Aeronautical Days, 2006.
[10] STREIT T, SCHRAUF G, DIN I S E, et al. The telfona pathfinder model, a second look[C]//V European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010, 2010.
[11] JOSLIN R D. Overview of laminar flow control:NASA/TP-1998-208705[R]. Washington, D.C.:NASA, 1998.
[12] COLLIER F. Integrated system research program environmentally responsible aviation (ERA) project[C]//Eco-aero Vision, 2010.
[13] 朱志强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, GUAN J C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese).
[14] 张彦军, 段卓毅, 雷武涛, 等. 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019, 40(4):122429. ZHANG Y J, DUAN Z Y, LEI W T, et al. Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122429(in Chinese).
[15] 马晓永, 张彦军, 段卓毅, 等. 自然层流机翼气动外形优化研究[J]. 空气动力学学报, 2015, 33(6):812-817. MA X Y, ZHANG Y J, DUAN Z Y, et al. Study of aerodynamic shape optimization for natural laminar wing[J]. Acta Aerodynamica Sinica, 2015, 33(6):812-817(in Chinese).
[16] SCHUBAUER G B, SKRAMSTAD H. Laminar-boundary-layer oscillations and transition on a flat plate[J]. Journal of Research of the National Bureau of Standards, 1947, 38:251.
[17] PAREDES P, VENKATACHARI B, CHOUDHARI M M, et al. Transition analysis for the CRM-NLF wind tunnel configuration[C]//AIAA Scitech 2021 Forum. Reston:AIAA, 2021.
[18] SARIC W, YEATES L. Experiments on the stability of crossflow vortices in swept-wing flows[C]//23rd Aerospace Sciences Meeting. Reston:AIAA, 1985.
[19] INGEN J V. A suggested semi-empirical method for the calculation of the boundary layer transition region[J]. Journal of Applied Physics, 1956.
[20] MALIK M R, ORSZAG S A. Linear stability analysis of three-dimensional compressible boundary layers[J]. Journal of Scientific Computing, 1987, 2(1):77-97.
[21] STUART J T. On the non-linear mechanics of wave disturbances in stable and unstable parallel flows Part 1. The basic behaviour in plane Poiseuille flow[J]. Journal of Fluid Mechanics, 1960, 9(3):353-370.
[22] ZHOU H, YOU X Y. On problems in the weakly nonlinear theory of hydrodynamic stability and its improvement[J]. Acta Mechanica Sinica, 1993, 9(1):1-12.
[23] TANGD B, WANG W Z. On nonlinear stability in nonparallel boundary layer flow[J]. Journal of Hydrodynamics (Ser B), 2004, 16(3):301-307.
[24] BERTOLOTTI F P, HERBERT T, SPALART P R. Linear and nonlinear stability of the Blasius boundary layer[J]. Journal of Fluid Mechanics, 1992, 242:441-474.
[25] GREER D, HAMORY P, KRAKE K, et al. Design and predictions for a high-altitude (low Reynolds-number) aerodynamic flight experiment[C]//17th Applied Aerodynamics Conference. Reston:AIAA, 1999.
[26] MESSING R, KLOKER M J. Investigation of suction for laminar flow control of three-dimensional boundary layers[J]. Journal of Fluid Mechanics, 2010, 658:117-147.
[27] DHAWAN S, NARASIMHA R. Some properties of boundary layer flow during the transition from laminar to turbulent motion[J]. Journal of Fluid Mechanics, 1958, 3(4):418-436.
[28] CHO J R, CHUNG M K. A k-e-γ equation turbulence model[J]. Jounal of Fluid Mechanics, 1992, 237:301-322.
[29] STEELANT J, DICK E. Modelling of bypass transition with conditioned Navier-Stokes equations coupled to an intermittency transport equation[J]. International Journal for Numerical Methods in Fluids, 1996, 23:193-220.
[30] SUZEN Y, HUANG P. Modeling of flow transition using an intermittency transport equation[J]. Journal of Fluids Engineering, 2000, 122:273-284.
[31] LANGTRY R, MENTER F. Transition modeling for general CFD applications in aeronautics[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005.
[32] 黄章峰, 逯学志, 于高通. 机翼边界层的横流稳定性分析和转捩预测[J]. 空气动力学学报, 2014, 32(1):14-20. HUANG Z F, LU X Z, YU G T. Cross-flow instability analysis and transition prediction of airfoil boundary layer[J]. Acta Aerodynamica Sinica, 2014, 32(1):14-20(in Chinese)
[33] 徐家宽, 白俊强, 乔磊, 等. 横流不稳定性转捩预测模型[J]. 航空学报, 2015, 36(6):1814-1822. XU J K, BAI J Q, QIAO L, et al. Transition model for predicting crossflow instabilities[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1814-1822(in Chinese).
[34] 王亮, 符松. 一种适用于超音速边界层的湍流转捩模式[J]. 力学学报, 2009, 41(2):162-168. WANG L, FU S. A new transition/turbulence model for the flow transition in supersonic boundary layer[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2):162-168(in Chinese).
[35] 方宝瑞. 飞机气动布局设计[M]. 北京:航空工业出版社, 1997. FANG B R. Aerodynamic layout design of aircraft[M]. Beijing:Aviation Industry Press, 1997(in Chinese).
[36] KHALID M, JONES D J. A summary of transonic natural laminar flow airfoil development at NAE (resume des recherches de l'Ena sur des profils aerodynamiques A ecoulements laminaires naturels transsoniques):NAE-NN-65 NRC No.31608[R]. Ottawa:National Research Council Canada, 1990.
[37] 乔志德, 赵文华, 李育斌, 等. 超临界自然层流翼型NPU-L72513的风洞试验研究[J]. 气动实验与测量控制, 1993, 7(2):40-45. QIAO Z D, ZHAO W H, LI Y B, et al. The transonic wind tunnel test research for the supercritical natural laminar airfoil NPU-L72513[J]. Journal of Experiments in Fluid Mechanics, 1993, 7(2):40-45(in Chinese).
[38] BIBER K, TILMANN C P. Supercritical airfoil design for future high-altitude long-endurance concepts[J]. Journal of Aircraft, 2004, 41(1):156-164.
[39] CELLA U, QUAGLIARELLA D, DONELLI R, et al. Design and test of the UW-5006 transonic natural-laminar-flow wing[J]. Journal of Aircraft, 2010, 47(3):783-795.
[40] STREIT T, WICHMANN G, VON KNOBLAUCH ZU HATZBACH F, et al. Implications of conical flow for laminar wing design and analysis[C]//29th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2011.
[41] EGGLESTON B, POOLE R J D, JONES D J, et al. Thick supercritical airfoils with low drag and natural laminar flow[J]. Journal of Aircraft, 1987, 24(6):405-411.
[42] ZHANG Y F, FANG X M, CHEN H X, et al. Supercritical natural laminar flow airfoil optimization for regional aircraft wing design[J]. Aerospace Science and Technology, 2015, 43:152-164.
[43] HAN Z H, CHEN J, ZHU Z, et al. Aerodynamic design of transonic natural-laminar-flow (NLF) wing via surrogate-basedGlobal optimization[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016.
[44] 陈永彬, 唐智礼, 盛建达. 跨音速自然层流翼型多目标优化设计[J]. 计算物理, 2016, 33(3):283-296. CHENY B, TANG Z L, SHENG J D. Multi-objective optimization for natural laminar flow airfoil in transonic flow[J]. Chinese Journal of Computational Physics, 2016, 33(3):283-296(in Chinese).
[45] 邢宇, 罗东明, 余雄庆. 超临界层流翼型优化设计策略[J]. 北京航空航天大学学报, 2017, 43(8):1616-1624. XING Y, LUO D M, YU X Q. Optimization strategy of supercritical laminar flow airfoil design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8):1616-1624(in Chinese).
[46] 武宁, 唐鑫, 段卓毅, 等. 基于TSP方法的自然层流机翼转捩位置测量[J]. 实验流体力学, 2020, 34(6):66-70. WU N, TANG X, DUAN Z Y, et al. Transition measurement for the nature-laminar wing based on TSP technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6):66-70(in Chinese).
[47] 艾梦琪, 段卓毅, 张健, 等. 高亚声速层流翼型转捩数值模拟及试验研究[J]. 飞行力学, 2020, 38(6):77-81, 94. AI M Q, DUAN Z Y, ZHANG J, et al. Numerical simulation and test on transition of a high subsonic laminar airfoil[J]. Flight Dynamics, 2020, 38(6):77-81, 94(in Chinese).
[48] 赵轲, 郭兆电, 李权, 等. 基于混沌多项式方法的层流超临界翼型稳健设计研究[J]. 应用力学学报, 2016, 33(6):929-935, 1113. ZHAO K, GUO Z D, LI Q, et al. Robust design of laminar flow supercritical airfoil based on PCE method[J]. Chinese Journal of Applied Mechanics, 2016, 33(6):929-935, 1113(in Chinese).
[49] 张彦军, 赵轲, 张同鑫, 等. 雷诺数变化对翼型边界层发展及失速特性的影响[J]. 航空工程进展, 2019, 10(3):319-329. ZHANG Y J, ZHAO K, ZHANG T X, et al. The influence of Reynolds number on boundary layer development and stall characteristics of airfoil[J]. Advances in Aeronautical Science and Engineering, 2019, 10(3):319-329(in Chinese).
[50] ANDERSON B T, MEYER R R. Effects of wing sweep on boundary-layer transition for a smooth F-14A wing at Mach number from 0.700 to 0.825:NASA Technical memorandum 101712[R]. Washington,D.C.:NASA, 1990.
[51] PERRAUD J, ARCHAMBAUD J P. Transonic high Reynolds number transition experiments in the ETW cryogenic wind tunnel[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2010.
[52] PERRAUD J, SÉRAUDIE A, MOENS F. Transition on a high lift swept wing in the European Project Eurolift[C]//21st AIAA Applied Aerodynamics Conference. Reston:AIAA, 2003.
[53] FAUCI R, NICOL A. Wind tunnel tests of a transonic natural laminar flow wing[C]//25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston:AIAA, 2006.
[54] 尚金奎, 王鹏, 陈柳生, 等. TSP技术在转捩检测中的应用研究[J]. 空气动力学学报, 2015, 33(4):464-469. SHANG J K, WANG P, CHEN L S, et al. Application research of TSP technique in transition detection[J]. Acta Aerodynamica Sinica, 2015, 33(4):464-469(in Chinese).
[55] 赖国俊, 李政德, 张颖哲. 自然层流翼型高雷诺数风洞试验研究[J]. 航空科学技术, 2017, 28(8):12-15. LAI G J, LI Z D, ZHANG Y Z. Research on natural laminar airfoil wind tunnel test at high Reynolds number[J]. Aeronautical Science & Technology, 2017, 28(8):12-15(in Chinese).
[56] 邓双国, 额日其太, 聂俊杰. 后掠翼模型混合层流控制实验研究[J]. 实验流体力学, 2011, 25(3):30-33. DENG S G, ERQITAI, NIE J J. Hybrid laminar flow control experiment on swept wing model[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3):30-33(in Chinese).
[57] 王斌, 白存儒, 杨广郡, 等.后掠机翼低速流动转捩位置的升华法测量[J]. 实验力学, 2009, 24(3):197-201. WANG B, BAI C R, YANG G J, et al. Measurement of transition location change of swept wing in a low-speed flow based on sublimation method[J]. Journal of Experiment Mechanics, 2009, 24(3):197-201(in Chinese).
[58] VAVRA A, SOLOMON W, DRAKE A. Comparison of boundary layer transition measurement techniques on a laminar flow wing[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005.
[59] FOWELL L R. Antonatos P.P. Some results from the X-21A program-part2:Laminar flow flight test results on the X21-A. in recent developments in boundary layer research-part IV:AGARD Graph 97[R]. Paris:AGARD, 1965.
[60] WAGNER R D, MADDALON D V, FISHER D F. Laminar flow control leading-edge systems in simulated airline service[J]. Journal of Aircraft, 1990, 27(3):239-244.
[61] MADDALON D V. Hybrid laminar flow control fight research:NASA TM4331[R]. Washington, D.C.:NASA, 2015.
[62] COLLIER JR F S. An overview of recent subsonic laminar flow control flight experiments[C]//23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Reston:AIAA, 1993.
[63] FUJINO M. Natural-laminar-flow airfoil development for the honda jet[C]//20th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2002.
[64] 利.空客即将开展降低油耗的层流机翼技术试飞[J]. 国际航空, 2017(9):13. LI. Airbus is about to launch a test flight of laminar flow wing technology to reduce fuel consumption[J]. International Aviation, 2017(9):13(in Chinese).
[65] STURDZA P. Extensive supersonic natural laminar flow on the aerion business jet[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2007.
[66] 钟海. 层流飞行试验迎角精确控制技术研究[J]. 飞行力学, 2020, 38(3):82-86. ZHONG H. Investigation for precise angle-of-attack control technique of laminar flow flight test[J]. Flight Dynamics, 2020, 38(3):82-86(in Chinese).
[67] 王猛, 钟海, 衷洪杰, 等. 红外热像边界层转捩探测的飞行试验应用研究[J]. 空气动力学学报, 2019, 37(1):160-167. WANG M, ZHONG H, ZHONG H J, et al. Flight test applications of boundary layer transition detection method using IR technique[J]. Acta Aerodynamica Sinica, 2019, 37(1):160-167(in Chinese).
[68] 李沛峰, 张彬乾, 陈迎春, 等. 减小翼型激波阻力的鼓包流动控制技术[J]. 航空学报, 2011, 32(6):971-977. LI P F, ZHANG B Q, CHEN Y C, et al. Wave drag reduction of airfoil with shock control bump[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):971-977(in Chinese).
[69] KIRCHNER M E. Laminar flow:Challenge and potential:NASA CP-2487[R]. Washington, D.C.:NASA, 1987
[70] SEITZ A, KRUSE M, WUNDERLICH T, et al. The DLR project LamAiR:Design of a NLF forward swept wing for short and medium range transport application[C]//29th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2011.
[71] BRANDON J M,MANUAL G S, WRIGHT R E, et al. In-flight flow visualization using infrared imaging[J]. Journal of Aircraft, 1990, 27(7):612-618.
[72] HORSTMANN K, MUELLER R, ROHARDT C, et al. Design and flight test evaluation of a laminar wing glove on a commuter aircraft[C]//19th ICAS Congress, 1994.
[73] SZEWCZYK M, SMUSZ R, DE GROOT K, et al. In-flight investigations of the unsteady behaviour of the boundary layer with infrared thermography[J]. Measurement Science and Technology, 2017, 28(4):044002.
[74] CARPENTER A, SARIC W, REED H. Laminar flow control on a swept wing with distributed roughness[C]//26th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2008.
[75] TUCKER A A, SARIC W S, REED H L. Laminar flow control flight experiment design and execution[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014.
[76] ROBERTS M W, REED H L, SARIC W S. Computational evaluation and linear stability of a transonic laminar-flow wing glove[J]. Journal of Aircraft, 2014, 52(2):595-608.
[77] GARZON A,MATISHECK J, BANKS D, et al. Supersonic NLF robustness flight testing:Transition due to discrete roughness elements[C]//32nd AIAA Applied Aerodynamics Conference. Reston:AIAA, 2014.
[78] RESHOTKO E. Drag reduction by cooling in hydrogen-fueled aircraft[J]. Journal of Aircraft, 1979, 16(9):584-590.
[79] 张庆利, 李京伯. 用主动柔顺壁运动控制边界层转捩[J]. 空气动力学学报, 1999, 17(3):333-337. ZHANG Q L, LI J B. Control of boundary layer transition UsingActive compliant wall motion[J]. Acta Aerodynamica Sinica, 1999,17(3):333-337(in Chinese).
[80] CARPENTER P W, PORTER L J. Effects of passive porous walls on boundary-layer instability[J]. AIAA Journal, 2001, 39(4):597-604.
[81] SARIC W, RUBEN CARRILLO J JR, REIBERT M. Leading-edge roughness as a transition control mechanism[C]//36th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1998.
[82] 徐家宽, 白俊强. 基于边界层相似性解的放大因子输运模型[J]. 航空学报, 2016, 37(4):1103-1113. XU J K, BAI J Q. Amplification factor transport model based on boundary layer similarity solution[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1103-1113(in Chinese).
[83] SAEED T I, GRAHAM W R, HALL C A. Boundary-layer suction system design for laminar-flying-wing aircraft[J]. Journal of Aircraft, 2011, 48(4):1368-1379.
[84] RISSE K, SCHUELTKE F, STUMPF E, et al. Conceptual wing design methodology for aircraft with hybrid laminar flow control[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014.
[85] KRISHNAN K S G, BERTRAM O, SEIBEL O. Review of hybrid laminar flow control systems[J]. Progress in Aerospace Sciences, 2017, 93:24-52.
[86] RISSE K, STUMPF E. Conceptual aircraft design with hybrid laminar flow control[J]. CEAS Aeronautical Journal, 2014, 5(3):333-343.
[87] 王菲, 额日其太, 王强, 等. 基于升华法的后掠翼混合层流控制研究[J]. 实验流体力学, 2010, 24(3):54-58. WANG F,ERIQITAI, WANG Q, et al. Investigation of HLFC on swept wing based on sublimation technique[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3):54-58(in Chinese).
[88] 杨体浩, 白俊强, 史亚云, 等. 考虑吸气分布影响的HLFC机翼优化设计[J]. 航空学报, 2017, 38(12):121158. YANG T H, BAI J Q, SHI Y Y, et al. Optimization design for HLFC wings considering influence of suction distribution[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121158(in Chinese).
[89] SHI Y Y, BAI J Q, HUA J, et al. Numerical analysis and optimization of boundary layer suction on airfoils[J]. Chinese Journal of Aeronautics, 2015, 28(2):357-367.
[90] 史亚云, 郭斌, 刘倩, 等. 基于能量观点的混合层流优化设计[J]. 北京航空航天大学学报, 2019, 45(6):1162-1174. SHI Y Y, GUO B, LIU Q, et al. Hybrid laminar flow optimization design from energy view[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6):1162-1174(in Chinese).
[91] BANKS D W, FREDERICK M A. In-flight boundary-layer transition of a large flat plate at supersonic speeds[C]//15th International Symposium on Flow Visualization, 2012.
[92] YOSHIDA K. Supersonic drag reduction technology in the scaled supersonic experimental airplane project by JAXA[J]. Progress in Aerospace Sciences, 2009, 45(4-5):124-146.
[93] NIU H B, YI S H, LIU X L, et al. Experimental investigation of boundary layer transition over a delta wing at Mach number 6[J]. Chinese Journal of Aeronautics, 2020, 33(7):1889-1902.
[94] 聂晗, 宋文萍, 韩忠华, 等.面向超声速民机层流机翼设计的转捩预测方法[J]. 航空学报, 2022, 43(9):626342. NIE H, SONG W P,HAN Z H, et al. Automatic transition prediction for natural-laminar-flow wing design of supersonic transports[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9):626342(in Chinese).
[95] 丁玉临, 韩忠华, 乔建领, 等.超声速民机总体气动布局设计关键技术研究进展[J].航空学报, 2022, 43(9):626310. DING Y L,HAN Z H, QIAO J L, et al. Research progress of key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica,2022,43(9):626310(in Chinese).
Outlines

/