Fluid Mechanics and Flight Mechanics

γ-Reθt-fRe transition model for compressible flow

  • LIU Qingyang ,
  • LEI Juanmian ,
  • LIU Zhou ,
  • SHI Lei ,
  • ZHOU Weijiang
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. China Academy of Aerospace Aerodynamics, Beijing 100074, China

Received date: 2021-05-13

  Revised date: 2021-07-22

  Online published: 2022-09-05

Supported by

National Numerical Windtunnel Project;National Natural Science Foundation of China (11772317)

Abstract

A transition model, γ-Reθ t-fRe, considering flow compressibility is developed from the original γ-Reθ ttransition model framework. The compressibility correction is introduced for the existing transition criteria, and the original transition correlation function based on incompressible flow is modified using the Reynolds number compressibility analogy relation obtained by the reference temperature method. To achieve model localization, an additional Reynolds number compressibility analogy relation fRe transport equation is constructed. The developed γ-Reθ t-fRe transition model is used to examine the transition cases under different flow conditions and compared with the basic γ-Reθ t transition model. The numerical simulation results show that the γ-Reθ t-fRe transition model achieves seamless unified simulation capability from low speed to high speed. It is automatically restored to the basic γ-Reθ t transition model under low speed flow conditions, while significantly improves the prediction of the flow transition trigger position and transition zone development under supersonic and hypersonic flow conditions.

Cite this article

LIU Qingyang , LEI Juanmian , LIU Zhou , SHI Lei , ZHOU Weijiang . γ-Reθt-fRe transition model for compressible flow[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(8) : 125794 -125794 . DOI: 10.7527/S1000-6893.21.25794

References

[1] 陈苏宇, 江涛, 常雨, 等. 高超声速钝头体边界层转捩试验[J]. 航空学报, 2020, 41(12): 124098. CHEN S Y, JIANG T, CHANG Y, et al. Hypersonic boundary layer transition over blunt nosetipped bodies: Experiment[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124098 (in Chinese).
[2] 袁湘江, 沙心国, 时晓天, 等. 高超声速流动中噪声与湍流度的关系[J]. 航空学报, 2020, 41(11): 123791. YUAN X J, SHA X G, SHI X T, et al. Noise-turbulence relationship in hypersonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 123791 (in Chinese).
[3] 陈坚强, 涂国华, 万兵兵, 等. HyTRV流场特征与边界层稳定性特征分析[J]. 航空学报, 2021, 42(6): 124317. CHEN J Q, TU G H, WAN B B, et al. Characteristics of flow field and boundary-layer stability of HyTRV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124317 (in Chinese).
[4] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894-2906.
[5] LANGTRY R B, SENGUPTA K, YEH D T, et al. Extending the γ-Reθt local correlation based transition model for crossflow effects: AIAA-2015-2474[R]. Reston: AIAA, 2015.
[6] WALTERS D K, LEYLEK J H. A new model for boundary layer transition using a single-point RANS approach[J]. Journal of Turbomachinery, 2004, 126(1): 193-202.
[7] MENTER F R, SMIRNOV P E, LIU T, et al. A one-equation local correlation-based transition model[J]. Flow, Turbulence and Combustion, 2015, 95(4): 583-619.
[8] CODER J G. Enhancement of the amplification factor transport transition modeling framework: AIAA-2017-1709[R]. Reston: AIAA, 2017.
[9] 张毅锋, 何琨, 张益荣, 等. Menter转捩模型在高超声速流动模拟中的改进及验证[J]. 宇航学报, 2016, 37(4): 397-402. ZHANG Y F, HE K, ZHANG Y R, et al. Improvement and validation of menter’s transition model for hypersonic flow simulation[J]. Journal of Astronautics, 2016, 37(4): 397-402 (in Chinese).
[10] 袁先旭, 何琨, 陈坚强, 等. MF-1模型飞行试验转捩结果初步分析[J]. 空气动力学学报, 2018, 36(2): 286-293. YUAN X X, HE K, CHEN J Q, et al.Preliminary transition research analysis of MF-1[J]. Acta Aerodynamica Sinica, 2018, 36(2): 286-293 (in Chinese).
[11] KRAUSE M, BEHR M, BALLMANN J. Modeling of transition effects in hypersonic intake flows using a correlation-based intermittency model: AIAA-2008-2598[R]. Reston: AIAA, 2008.
[12] ZHANG X D, GAO Z H. A numerical research on a compressibility-correlated langtry’s transition model for double wedge boundary layer flows[J]. Chinese Journal of Aeronautics, 2011, 24(3): 249-257.
[13] XIA C C, CHEN W F. Boundary-Layer transition prediction using a simplified correlation-based model[J]. Chinese Journal of Aeronautics, 2016, 29(1): 66-75.
[14] FRAUHOLZ S, REINARTZ B U, MüLLER S, et al. Transition prediction for scramjets using γ-Reθ t model coupled to two turbulence models[J]. Journal of Propulsion and Power, 2015, 31(5): 1404-1422.
[15] WANG Y T, LI Y W, XIAO L H, et al. Similarity-solution-based improvement of γ-Reθ t model for hypersonic transition prediction[J]. International Journal of Heat and Mass Transfer, 2018, 124: 491-503.
[16] FU S, WANG L. RANS modeling of high-speed aerodynamic flow transition with consideration of stability theory[J]. Progress in Aerospace Science, 2012, 58: 36-59.
[17] WANG L, FU S. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow, Turbulence and Combustion, 2011, 87(1): 165-187.
[18] 周玲, 阎超, 郝子辉, 等. 转捩模式与转捩准则预测高超声速边界层流动[J]. 航空学报, 2016, 37(4): 1092-1102. ZHOU L, YAN C, HAO Z H, et al. Transition model and transition criteria for hypersonic boundary layer flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1092-1102 (in Chinese).
[19] XU J K, BAI J Q, FU Z Y, et al. Parallel compatible transition closure model for high-speed transitional flow[J]. AIAA Journal, 2017, 55(9): 3040-3050.
[20] SHI M T, ZHU W K, LEE C B. Engineering model for transition prediction based on a hypersonic quiet wind tunnel[J]. AIAA Journal, 2020, 58(8): 3476-3485.
[21] 易淼荣, 赵慧勇, 乐嘉陵, 等. 基于IDDES框架的 γ-Reθ 转捩模型[J]. 航空学报, 2019, 40(8): 122726. YI M R, ZHAO H Y, LE J L, et al . γ-Reθ transition model based on IDDES frame[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122726 (in Chinese).
[22] ECKERT E R G. Engineering relations for heat transfer and friction in high-velocity laminar and turbulent boundary-layer flow over surfaces with constant pressure and temperature[J]. Transactions of the American Society of Mechanical Engineers, 1956, 78(6): 1273.
[23] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[24] NIE S Y, KRIMMELBEIN N, KRUMBEIN A, et al. Coupling of a Reynolds stress model with γ-Reθ t transition model[J]. AIAA Journal, 2018, 56(1): 146-157.
[25] MEE D. Boundary-layer transition measurements in hypervelocity flows in a shock tunnel[J]. AIAA Journal, 2002, 40(8): 1542-1548.
[26] CHEN F, MALIK M R, BECKWITH I E. Boundary-layer transition on a cone and flat plate at Mach 3.5[J]. AIAA Journal, 1989, 27(6): 687-693.
[27] SINGER B A, DINAVAHI S P, VENKIT I. Testing of transition-region models: test cases and data: NASA CR 4371[R]. Washington, D.C.: NASA, 1991.
[28] 刘周, 龚安龙, 杨云军, 等. 基于 γ-Reθ 转捩模型的尖锥超声速流动转捩模拟[C]//第十七届全国高超声速气动力/热学术交流会, 2013. LIU Z, GONG A L, YANG Y J, et al. Supersonic flow transition simulations of sharp cone using γ-Reθ transition model[C]//17th National Hypersonic Aerodynamics/Heat Symposium Proceeding, 2013 (in Chinese).
[29] HORVATH T J, BERRY S A, HOLLIS B R, et al. Boundary layer transition on slender cones in conventional and low disturbance Mach 6 wind tunnels: AIAA-2002-2743[R]. Reston: AIAA, 2002.
Outlines

/