Fluid Mechanics and Flight Mechanics

Integrated aerodynamic and stealth optimization of aircraft based on NS/CFIE adjoint equations

  • Jiangtao HUANG ,
  • Lin ZHOU ,
  • Xian CHEN ,
  • Chuang MA ,
  • Gang LIU ,
  • Zhenghong GAO
Expand
  • 1.Aerospace Technology Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China
    2.School of Aeronautics,Northwest Polytechnic University,Xi’an 710072,China

Received date: 2022-07-04

  Revised date: 2022-07-18

  Accepted date: 2022-08-10

  Online published: 2022-08-31

Supported by

Provincial or Ministerial Level Project

Abstract

Advanced integrated aerodynamic and stealth design technology is the key link to realize the technical indexes of future combat aircraft, such as high stealth, high maneuverability, wide speed range and long range. This study derives the “coupled” adjoint equation of aerodynamic stealth based on the idea of interdisciplinary coupling adjoint. First, the adjoint equation of the flow field is constructed based on the Navier-Stokes equation. Through the variational processing of near-field vector multiplication, far-field vector multiplication, and the radar scattering area, the adjoint equation based on MLFMA is then developed. The electromagnetic adjoint equation of the algorithm, combined with the independently developed XSQP optimization framework and parametric modeling technology, constructs a highly reliable aerodynamic stealth comprehensive optimization technology platform. Taking a certain flying wing layout as the research object, we conduct the aerodynamic stealth integration test. The test results show that both the gradient calculation accuracy of the established accompanying platform and the optimization design efficiency are high, providing strong technical support for the aerodynamic stealth integration design of combat aircraft.

Cite this article

Jiangtao HUANG , Lin ZHOU , Xian CHEN , Chuang MA , Gang LIU , Zhenghong GAO . Integrated aerodynamic and stealth optimization of aircraft based on NS/CFIE adjoint equations[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(12) : 127757 -127757 . DOI: 10.7527/S1000-6893.2022.27757

References

1 VOS J B, RIZZI A, DARRACQ D, et al. Navier-Stokes solvers in European aircraft design[J]. Progress in Aerospace Sciences200238(8): 601-697.
2 武亮, 左向梅. 基于面元修正的机翼非定常气动力分析[J]. 航空计算技术201545(6): 83-86.
  WU L, ZUO X M. Unsteady aerodynamics analysis of wing based on panel correction method[J]. Aeronautical Computing Technique201545(6): 83-86 (in Chinese).
3 张淼, 刘铁军, 马涂亮, 等. 基于CFD方法的大型客机高速气动设计[J]. 航空学报201637(1): 244-254.
  ZHANG M, LIU T J, MA T L, et al. High speed aerodynamic design of large civil transporter based on CFD method[J]. Acta Aeronautica et Astronautica Sinica201637(1): 244-254 (in Chinese).
4 李洁, 刘战合, 王英, 等. 飞行器目标RCS计算方法适用性研究[J]. 战术导弹技术2012(1): 38-42, 63.
  LI J, LIU Z H, WANG Y, et al. Research on the applicability of the approach for calculating the RCS of aircraft target[J]. Tactical Missile Technology2012(1): 38-42, 63 (in Chinese).
5 GAO Z H, WANG M L. An efficient algorithm for calculating aircraft RCS based on the geometrical characteristics[J]. Chinese Journal of Aeronautics200821(4): 296-303.
6 HAN Z H, ZHANG K S, LIU J, et al. Surrogate-based aerodynamic shape optimization with application to wind turbine airfoils: AIAA-2013-1108[R]. Reston: AIAA, 2013.
7 ZHANG K S, HAN Z H, LI W J, et al. Coupled aerodynamic and structural optimization of a subsonic-transport wing using surrogate model[C]∥ 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
8 王超, 高正红. 小展弦比薄机翼精细化气动优化设计研究[J]. 中国科学: 技术科学201545(6): 643-653.
  WANG C, GAO Z H. Refined aerodynamic design optimization of a wing with small aspect ratio[J]. Scientia Sinica (Technologica)201545(6): 643-653 (in Chinese).
9 黄江涛,刘刚,高正红,等 .飞行器多学科耦合伴随系统的现状与发展趋势[J].航空学报202041(5): 623404.
  HUANG J T, LIU G, GAO Z H, et al. Current situation and development trend of multidisciplinary coupled adjoint system for aircraft [J]. Acta Aeronautica et Astronautica Sinica202041(5): 623404 (in Chinese).
10 黄江涛,周铸,刘刚,等 .飞行器气动/结构多学科延迟耦合伴随系统数值研究[J].航空学报201839(5): 121731.
  HUANG J T, ZHOU Z, LIU G, et al. Numerical study of aero-structural multidisciplinary lagged coupled adjoint system for aircraft[J].Acta Aeronautica et Astronautica Sinica201839(5):121731 (in Chinese).
11 MARTINS J R. A coupled-adjoint method for high-fidelity aero-structural optimization[D]. Stanford:Stanford Stanford University, 2002.
12 CHARLES M, GAETAN K, JOAQUIN M. Towards high-fidelity aerostructural optimization using a coupled adjoint approach[C]∥12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2008.
13 ABU-ZURAYK M. Constrained aero-elastic multi-point optimization using the coupled adjoint approach[C]∥ MUSAF II Colloquium, 2013.
14 LEOVIRIYAKIT K, JAMESON A. Case studies in aero-structural wing planform and section optimization[C]∥ 22nd Applied Aerodynamics Conference and Exhibit. Reston: AIAA, 2004.
15 黄江涛, 张绎典, 高正红, 等. 基于流场/声爆耦合伴随方程的超声速公务机声爆优化[J]. 航空学报201940(5): 122505.
  HUANG J T, ZHANG Y D, GAO Z H, et al. Sonic boom optimization of supersonic jet based on flow/sonic boom coupled adjoint equations[J]. Acta Aeronautica et Astronautica Sinica201940(5): 122505 (in Chinese).
16 ABU-ZURAYK M, BREZILLON J. Shape optimization using the aerostructural coupled ajoint approach for viscous flows[C]∥ Evolutionary and Deterministic Methods for Design, Optimization and Control, 2011.
17 MARCELET M, PETER J, G′ CARRIER. Sensitivity analysis of a strongly coupled aero-structural system using direct and adjoint methods: AIAA-2008-5863[R]. Reston: AIAA, 2008.
18 GHAZLANE I, CARRIER G, DUMONT A. Aerostructural adjoint method for flexible wing optimization AIAA-2012-1924[R]. Reston: AIAA, 2012.
19 HUANG J, YU J, GAO Z, et al. Multi-disciplinary optimization of large civil aircraft using a coupled aero-structural adjoint approach[M]∥Lecture notes in electrical engineering. Singapore: Springer Singapore, 2019: 1042-1054.
20 ZHOU L, HUANG J T, GAO Z H. Radar cross section gradient calculation based on adjoint equation of method of moment[M]∥Lecture notes in electrical engineering. Singapore: Springer Singapore, 2019: 1427-1445.
21 HARRINGTON F. Field computation by moment methods[M]. New York: Wiley-IEEE Press, 1993.
22 黄江涛, 刘刚, 周铸, 等. 基于离散伴随方程求解梯度信息的若干问题研究[J]. 空气动力学学报201735(4): 554-562.
  HUANG J T, LIU G, ZHOU Z, et al. Investigation of gradient computation based on discrete adjoint method[J]. Acta Aerodynamica Sinica201735(4): 554-562 (in Chinese).
23 ERGUL O, GUREL L. Iterative solutions of electromagnetics problems with MLFMA [M]. New York : Wiley-IEEE Press, 2014: 177-268.
24 ROKHLIN V. Rapid solution of integral equations of scattering theory in two dimensions[J]. Journal of Computational Physics199086(2): 414-439.
25 SPEKREIJSE S, PRANANTA B, KOK J. A simple, robust and fast algorithm to compute deformations of multi-block structured grids: NLR-TP-2002-105 [R]. Netherlands: National Aerospace Laboratory, 2002.
26 朱心雄. 自由曲线曲面造型技术[M]. 北京: 科学出版社, 2000.
  ZHU X X. Free-form curve and surface modeling technology[M]. Beijing: Science Press, 2000 (in Chinese).
27 HUANG J T, ZHOU Z, GAO Z H, et al. Aerodynamic multi-objective integrated optimization based on principal component analysis[J]. Chinese Journal of Aeronautics201730(4): 1336-1348.
28 ZHOU L, HUANG J T, GAO Z H, et al. Three-dimensional aerodynamic/stealth optimization based on adjoint sensitivity analysis for scattering problem[J]. AIAA Journal202058(6): 2702-2715.
Outlines

/