ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Low-pressure thermal stability and high-temperature electrical conductivity of dense amorphous SiCN
Received date: 2022-06-30
Revised date: 2022-07-27
Accepted date: 2022-08-17
Online published: 2022-08-31
Supported by
Chinese Fundamental Research Funds for Central Universities(YJ202164);Natural Science Foundation of Sichuan Province(2022NSFSC0294);National Natural Science Foundation of China(12002312)
Accurately quantifying the aerodynamic heating of high-temperature components of a hypersonic vehicle help develop the thermal protection system design and improve the reliability of the high-temperature components. In this paper, the feasibility about high temperature sensing of amorphous SiCN in the hypersonic aircraft field is discussed by studying the thermal stability and high-temperature electrical conductivity of dense amorphous SiCN under low pressure environment. The results show that the dense amorphous SiCN exhibits lower high temperature stability and anti-crystallization ability under low pressure environment.The visible crystallization and thermal decomposition occur at 1 300 ℃, which is about 200 ℃ lower than that of amorphous SiCN treated at normal pressure. The low pressure promotes the ordering transformation of free carbon. The resistance of amorphous SiCN treated at low pressure and 1 000 ℃ is about 4 orders of magnitude lower than that of amorphous SiCN treated at normal pressure, showing lower temperature sensitivity. In conclusion, amorphous SiCN still maintains excellent temperature sensing ability under low pressure environment, but the operating temperature has dropped by about 200 ℃.
Jiahong NIU , Haonan JIA , Fajun YI , Zujun PENG , Wei CHEN . Low-pressure thermal stability and high-temperature electrical conductivity of dense amorphous SiCN[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(S2) : 152 -159 . DOI: 10.7527/S1000-6893.2022.27732
1 | 梁伟, 金华, 孟松鹤, 等. 高超声速飞行器新型热防护机制研究进展[J]. 宇航学报, 2021, 42(4): 409-424. |
LIANG W, JIN H, MENG S H, et al. Research progress on new thermal protection mechanism of hypersonic vehicles[J]. Journal of Astronautics, 2021, 42(4): 409-424 (in Chinese). | |
2 | 徐世南, 吴催生. 高超声速飞行器热防护结构研究进展[J]. 飞航导弹, 2019(4): 48-55. |
XU S N, WU C S. Research progress of thermal protection structure of hypersonic vehicle[J]. Aerodynamic Missile Journal, 2019(4): 48-55 (in Chinese). | |
3 | 孟松鹤, 丁小恒, 易法军, 等. 高超声速飞行器表面测热技术综述[J]. 航空学报, 2014, 35(7): 1759-1775. |
MENG S H, DING X H, YI F J, et al. Overview of heat measurement technology for hypersonic vehicle surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1759-1775 (in Chinese). | |
4 | DURRANT R, DUSSY S, CROWLE H, et al. SiREUS: Status of the European MEMS rate sensor[C]∥ AIAA Guidance, Navigation and Control Conference and Exhibit. Reston: AIAA, 2008: 6992. |
5 | WRIGHT N G, HORSFALL A B. SiC sensors: A review[J]. Journal of Physics D: Applied Physics, 2007, 40(20): 6345-6354. |
6 | COLOMBO P, MERA G, RIEDEL R, et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics[J]. Journal of the American Ceramic Society, 2010, 93(7): 1805-1837. |
7 | RICOHERMOSO E III, ROSENBURG F, KLUG F, et al. Piezoresistive carbon-containing ceramic nanocomposites—A review[J]. Open Ceramics, 2021, 5: 100057. |
8 | SUJITH R, JOTHI S, ZIMMERMANN A, et al. Mechanical behaviour of polymer derived ceramics—A review[J]. International Materials Reviews, 2021, 66(6): 426-449. |
9 | National Energy Technology Laboratory. NETL collaboration produces smart sensors to monitor ultra-high temperature energy systems[EB/OL]. (2019-02-19) [2022-06-30]. . |
10 | RYU H Y, WANG Q, RAJ R. Ultrahigh-temperature semiconductors made from polymer-derived ceramics[J]. Journal of the American Ceramic Society, 2010, 97(4):1668-1676. |
11 | ZHAO R, SHAO G, CAO Y J, et al. Temperature sensor made of polymer-derived ceramics for high-temperature applications[J]. Sensors and Actuators A: Physical, 2014, 219: 58-64. |
12 | JUNG S, SEO D, LOMBARDO S J, et al. Fabrication using filler controlled pyrolysis and characterization of polysilazane PDC RTD arrays on quartz wafers[J]. Sensors and Actuators A: Physical, 2012, 175: 53-59. |
13 | CUI Z F, LI X, CHEN G C, et al. Thin-film temperature sensor made from particle-filled polymer-derived ceramics pyrolyzed in vacuum[J]. Journal of the European Ceramic Society, 2022, 42(6): 2735-2742. |
14 | MONTEVERDE F, SAVINO R. Stability of ultra-high-temperature ZrB2-SiC ceramics under simulated atmospheric re-entry conditions[J]. Journal of the European Ceramic Society, 2007, 27(16): 4797-4805. |
15 | GOPINATH N K, JAGADEESH G, BASU B. Shock wave‐material interaction in ZrB2-SiC based ultra high temperature ceramics for hypersonic applications[J]. Journal of the American Ceramic Society, 2019, 102(11): 6925-6938. |
16 | HAUG J, LAMPARTER P, WEINMANN M, et al. Diffraction study on the atomic structure and phase separation of amorphous ceramics in the Si-(B)-C-N system. 2. Si-B-C-N ceramics[J]. Chemistry of Materials, 2004, 16(1): 83-92. |
17 | PRASAD R M, MERA G, MORITA K, et al. Thermal decomposition of carbon-rich polymer-derived silicon carbonitrides leading to ceramics with high specific surface area and tunable micro- and mesoporosity[J]. Journal of the European Ceramic Society, 2012, 32(2): 477-484. |
18 | KLEEBE H J, SUTTOR D, MüLLER H, et al. Decomposition-crystallization of polymer-derived Si-C-N ceramics[J]. Journal of the American Ceramic Society, 2005, 81(11): 2971-2977. |
19 | XU T H, MA Q S, CHEN Z H. The effect of environment pressure on high temperature stability of silicon oxycarbide glasses derived from polysiloxane[J]. Materials Letters, 2011, 65(11): 1538-1541. |
20 | NIU J H, MENG S H, JIN H, et al. Thermal stability and nanostructure evolution of amorphous SiCN ceramics during laser ablation in an argon atmosphere[J]. Journal of the European Ceramic Society, 2019, 39(15): 4535-4544. |
21 | CHEN Y H, YANG X P, CAO Y J, et al. Quantitative study on structural evolutions and associated energetics in polysilazane-derived amorphous silicon carbonitride ceramics[J]. Acta Materialia, 2014, 72: 22-31. |
22 | FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61(20): 14095-14107. |
/
〈 |
|
〉 |