Icing test flight area determination method based on surrogated model of water droplet collection

  • Junjie NIU ,
  • Weimin SANG ,
  • Dong LI ,
  • Lian HAO ,
  • Zelin WANG
Expand
  • 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.Key Laboratory of Icing and Anti/De-icing,China Aerodynamics Research and Development Center,Mianyang 621000,China
    3.Shanghai Aircraft Design and Research Institute,Commercial Aircraft Corporation of China Ltd,Shanghai 201210,China
    4.Chinese Flight Test Establishment,Xi’an 710089,China
E-mail: aeroicing@sina.cn

Received date: 2022-06-29

  Revised date: 2022-07-27

  Accepted date: 2022-08-16

  Online published: 2022-08-31

Supported by

Open Fund of Key Laboratory of Icing and Anti/De-icing of China(IADL20200101);National Key Project of China(GJXM92579);National Science and Technology Project

Abstract

In response to the problem that the icing index used in natural icing test flight area determination can only provide the icing probability and icing level, a new method is proposed. By sampling the continuous maximum icing conditions in Appendix C of Federal Aviation Regulations (FAR) Part 25, the air flow field and water droplet impingement characteristics were solved to obtain the water droplet collection amount for the sampling points. The surrogated model of the water droplet collection amount was constructed based on Proper Orthogonal Decomposition (POD) and Kriging. The weather simulation of the target area was performed using WRF (Weather Research and Forecasting) to obtain the temperature and the liquid water content. The water droplet collection amount over the target area was predicted with the surrogated model and the target area was divided by the moderate icing intensity. The results show that: the surrogated model can predict the effects of temperature, liquid water content, median volume diameter, height and flight speed on water droplet collection amount correctly; the temperature and the liquid water content of the target area obtained by WRF are in good agreement with the observed values; the surrogated model can quickly obtain the distribution of the water droplet collection amount over the target area and its variation with time; the suitable natural icing test flight area and the icing rate are determined. The growth of the flight speed makes the water droplet collection amount increase and causes the variation of the icing test flight area. This paper has some reference significance for the determination of the icing test flights area.

Cite this article

Junjie NIU , Weimin SANG , Dong LI , Lian HAO , Zelin WANG . Icing test flight area determination method based on surrogated model of water droplet collection[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(1) : 627697 -627697 . DOI: 10.7527/S1000-6893.2022.27697

References

1 SMITH W L. Weather problems peculiar to the New York-Chicago airway[J]. Monthly Weather Review192957(12): 503-506.
2 李浩然, 段玉宇, 张宇飞, 等. 结冰模拟软件AERO-ICE中的关键数值方法[J]. 航空学报202142(S1): 726371.
  LI H R, DUAN Y Y, ZHANG Y F, et al. Numerical method of ice-accretion software AERO-ICE[J]. Acta Aeronautica et Astronautica Sinica202142(S1): 726371 (in Chinese).
3 WU Q, XU H J, PEI B B, et al. Conceptual design and preliminary experiment of icing risk management and protection system[J]. Chinese Journal of Aeronautics202235(6): 101-115.
4 林贵平,卜雪琴,申晓斌,等 .飞机结冰与防冰技术[M].北京: 北京航空航天大学出版社,2016: 164-168.
  LIN G P, BU X Q, SHEN X B, et al. Aircraft icing and anti-icing technology[M]. Beijing: Beihang University Press, 2016: 164-168 (in Chinese).
5 朱春玲,朱程香 .飞机结冰及其防护[M]. 北京: 科学出版社,2016.
  ZHU C L, ZHU C X. Aircraft icing and its protection[M]. Beijing: Science Press, 2016 (in Chinese).
6 彭锦峰, 吴东润, 崔为运, 等. 3D打印夹芯复合材料模拟冰型设计与分析[J]. 航空学报202142(9): 224536.
  PENG J F, WU D R, CUI W Y, et al. Design and analysis of simulated ice with 3D printed sandwich composite material[J]. Acta Aeronautica et Astronautica Sinica202142(9): 224536 (in Chinese).
7 刘旭华. 飞机结冰适航验证和试飞技术[C]∥第十六届中国航空测控技术年会论文集. 北京: 测控技术杂志社, 2019: 32-34.
  LIU X H. Technology of airworthiness certification and flight test for aircraft icing[C]∥ The 16th China Aviation Measurement and Control Technology Annual Conference. Beijing:Editorial Office of Measurement and Control Technology Magazine, 2019: 32-34 (in Chinese).
8 李勤红, 乔建军, 陈增江. Y7-200A飞机自然结冰飞行试验[J]. 飞行力学199917(2): 64-69.
  LI Q H, QIAO J J, CHEN Z J. Natural icing flight test for Y7-200A aircraft[J]. Flight Dynamics199917(2): 64-69 (in Chinese).
9 王泽林, 倪洪波, 裴昌春. 我国干旱地区一次直升机自然结冰试飞天气个例分析[J]. 沙漠与绿洲气象202014(2): 68-74.
  WANG Z L, NI H B, PEI C C. A case study of helicopter natural icing flight test in arid areas of China[J]. Desert and Oasis Meteorology202014(2): 68-74 (in Chinese).
10 李佰平, 戴建华, 孙敏, 等. 一种改进的飞机自然结冰潜势算法研究[J]. 气象201844(11): 1377-1390.
  LI B P, DAI J H, SUN M, et al. An improved aircraft natural icing potential algorithm[J]. Meteorological Monthly201844(11): 1377-1390 (in Chinese).
11 SCHULTZ P, POLITOVICH M K. Toward the improvement of aircraft-icing forecasts for the continental United States[J]. Weather and Forecasting19927(3): 491-500.
12 BELO-PEREIRA M. Comparison of in-flight aircraft icing algorithms based on ECMWF forecasts[J]. Meteorological Applications201522(4): 705-715.
13 POLITOVICH M G, SAND W R .A proposed icing severity index based upon meteorology[C]∥4th International Conference on Aviation Weather Systems. Paris:Bulletin of the American Meteorological Society, 1991: 157-162.
14 THOMPSON G, BRUINTJES R T, BROWN B G, et al. Intercomparison of in-flight icing algorithms. Part I: WISP94 real-time icing prediction and evaluation program[J]. Weather and Forecasting199712(4): 878-889.
15 THOMPSON G, BULLOCK R, LEE T F. Using satellite data to reduce spatial extent of diagnosed icing[J]. Weather and Forecasting199712(1): 185-190.
16 BERNSTEIN B C, MCDONOUGH F, POLITOVICH M K, et al. Current icing potential: Algorithm description and comparison with aircraft observations[J]. Journal of Applied Meteorology and Climatology200544(7): 969-986.
17 MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal199432(8): 1598-1605.
18 易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心, 2007: 56-57.
  YI X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang: Aerodynamics Research and Development Center, 2007: 56-57 (in Chinese).
19 胡剑平, 刘振侠, 张丽芬. 霜状冰结冰数值模拟研究[J]. 航空计算技术201141(6): 8-11, 15.
  HU J P, LIU Z X, ZHANG L F. Numerical simulation of 3D rime ice[J]. Aeronautical Computing Technique201141(6): 8-11, 15 (in Chinese).
20 BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics199325: 539-575.
21 CAZEMIER W, VERSTAPPEN R W C P, VELDMAN A E P. Proper orthogonal decomposition and low-dimensional models for driven cavity flows[J]. Physics of Fluids199810(7): 1685-1699.
22 KRIGE D G. A statistical approach to some basic mine valuation problems on the witwatersrand[J]. Journal of the Chemical, Metallurgical & Mining Society of South Africa, 195152(6): 119-139.
23 PELLISSIER M P C, HABASHI W G, PUEYO A. Optimization via FENSAP-ICE of aircraft hot-air anti-icing systems[J]. Journal of Aircraft201148(1): 265-276.
24 刘藤, 李栋, 黄冉冉, 等. 基于降阶模型的翼型结冰冰形预测方法[J]. 北京航空航天大学学报201945(5): 1033-1041.
  LIU T, LI D, HUANG R R, et al. Ice shape prediction method of aero-icing based on reduced order model[J]. Journal of Beijing University of Aeronautics and Astronautics201945(5): 1033-1041 (in Chinese).
25 IULIANO E, BRANDI V, MINGIONE G, et al. Water impingement prediction on multi-element airfoils by means of Eulerian and Lagrangian approach with viscous and inviscid air flow: AIAA-2006-1270[R]. Reston: AIAA, 2006.
26 SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF model version 4[J/OL]. OpenSky, (2021-07-20) [2022-08-21]. .
27 MORRISON H, CURRY J A, KHVOROSTYANOV V I. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description[J]. Journal of the Atmospheric Sciences200562(6): 1665-1677.
28 KAIN J S. The kain-fritsch convective parameterization: an update[J]. Journal of Applied Meteorology200443(1): 170-181.
29 HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review2006134(9): 2318-2341.
30 COBER S G, ISAAC G A, STRAPP J W. Aircraft icing measurements in east coast winter storms[J]. Journal of Applied Meteorology and Climatology199534(1): 88-100.
31 JONES S L. Simulation of meteorological fields for icing applications at the summit of mount washington[D]. Nebraska: University of Nebraska, 2014: 42-47.
Outlines

/