ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Mechanism and sensitivity of force fight in dual redundant electromechanical actuators
Received date: 2022-06-01
Revised date: 2022-06-22
Accepted date: 2022-08-12
Online published: 2022-08-31
Supported by
Graduate Research Innovation Grant Program in Civil Aviation University of China(2021YJS076)
Existence of force fight in the position response process of the active-active dual redundant electromechanical actuation system is harmful to the safety of servomechanism. To better mitigate force fight, it is necessary to analyze its origin and determine the influence mechanism of system parameters on it. The parameters which have effect on force fight are obtained through theoretical analysis. Through Monte-Carlo simulation, the influence of each parameter on dynamic force fight and static force fight is discussed. By sensitivity analysis of the parameters which have effect on force fight, the parameters that have the greatest influence on force fight are obtained, including position signal discontinuity, position signal offset,delay of position sensor, and backlash,which can provide a reference for the design of the force equalization control method for the flight control system and conformity verification consideration.
Xiaozhe SUN , Dong HOU , Jianzhong YANG . Mechanism and sensitivity of force fight in dual redundant electromechanical actuators[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(S1) : 727661 -727661 . DOI: 10.7527/S1000-6893.2022.27661
1 | 陈晓雷. 多电飞机机电作动伺服系统控制策略研究[D]. 西安: 西北工业大学, 2016: 4-11. |
CHEN X L. Research on control strategy of electromechanical actuation servo system for more electric aircraft[D]. Xi’an: Northwestern Polytechnical University, 2016: 4-11 (in Chinese). | |
2 | QI H T, LANG Y, FU Y L. Modelling and simulation of dissimilar triplex redundant hybrid actuation system[J]. Journal of Applied Sciences, 2013, 13(9): 1564-1569. |
3 | ARRIOLA D, THIELECKE F. Design of fault-tolerant control functions for a primary flight control system with electromechanical actuators[C]∥ 2015 IEEE AUTOTESTCON. Piscataway: IEEE Press, 2015: 393-402. |
4 | KOWALSKI R. Force fight in parallel-redundant electro-mechanical actuation systems[C]∥Proceedings of More Electric Aircraft.2017. |
5 | WROBLE D G. Force fight study in a dual electromechanical actuator configuration[D]. Dayton: University of Dayton,2017:51-74. |
6 | 李璐, 刘远, 周宇航. 永磁同步电机鲁棒模型预测控制技术综述[J]. 工业仪表与自动化装置, 2020(5): 11-15. |
LI L, LIU Y, ZHOU Y H. Review of robust model predictive control technology for permanent magnet synchronous motors[J]. Industrial Instrumentation & Automation, 2020(5): 11-15 (in Chinese). | |
7 | 万琦, 刘更, 乔冠, 等. 机电作动器舵回路系统动态特性分析[J]. 机械科学与技术, 2017, 36(5): 805-810. |
WAN Q, LIU G, QIAO G, et al. Analyzing dynamic characteristics of rudder loop system for an electro-mechanical actuator[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(5): 805-810 (in Chinese). | |
8 | KOWALSKI R, WINDELBERG J, LADNER R, et al. Force fight compensation for redundant electro-mechanical flight control actuators[C]∥31st Congress of the International Council of the Aeronautical Sciences.Boon:ICAS, 2018. |
9 | 杨珍书. 飞控机电作动系统非线性建模和故障分析[D]. 天津: 中国民航大学, 2018: 9-31. |
YANG Z S. Nonlinear modeling and fault analysis of flight control electromechanical actuation system[D]. Tianjin: Civil Aviation University of China, 2018:9-31 (in Chinese). | |
10 | 白玉轩. 基于神经网络的飞控机电作动系统传感器故障检测研究[D]. 天津: 中国民航大学, 2020: 7-20. |
BAI Y X. Sensor fault detection of flight control electromechanical actuation system based on neutral network[D]. Tianjin: Civil Aviation University of China, 2020: 7-20 (in Chinese). | |
11 | 肖前进, 贾宏光, 章家保, 等. 电动舵机伺服系统非线性辨识及补偿[J]. 光学 精密工程, 2013, 21(8): 2038-2047. |
XIAO Q J, JIA H G, ZHANG J B, et al. Identification and compensation of nonlinearity for electromechanical actuator servo system[J]. Optics and Precision Engineering, 2013, 21(8): 2038-2047 (in Chinese). | |
12 | HUANG J, LIU Y, ZHANG X H, et al. Dynamic modeling and simulation of electro-mechanical actuator coupled with nonlinear factors[C]∥ 2018 37th Chinese Control Conference. Piscataway:IEEE Press, 2018: 3776-3780. |
13 | IJAZ S, HAMAYUN M T, ANWAAR H, et al. LPV modeling and tracking control of dissimilar redundant actuation system for civil aircraft[J]. International Journal of Control, Automation and Systems, 2019, 17(3): 705-715. |
14 | ARRIOLA D, THIELECKE F.Model-based design and experimental verification of a monitoring concept for an active-active electromechanical aileron actuation system[J]. Mechanical Systems and Signal Processing, 2017, 94: 322-345. |
15 | 魏泽宇, 许文波, 张国林, 等. 航天机电伺服系统的自抗扰控制[J]. 控制理论与应用, 2021, 38(1): 73-80. |
WEI Z Y, XU W B, ZHANG G L, et al. Active disturbance rejection control of aerospace electromechanical servo system[J]. Control Theory & Applications, 2021, 38(1): 73-80 (in Chinese). | |
16 | 范殿梁, 付永领, 郭彦青, 等. 非相似余度作动系统动态力均衡控制策略[J]. 北京航空航天大学学报, 2015, 41(2): 234-240. |
FAN D L, FU Y L, GUO Y Q, et al. Dynamic force equalization for dissimilar redundant actuator system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2): 234-240 (in Chinese). | |
17 | DI RITO G, LUCIANO B, BORGARELLI N, et al. Model-based condition-monitoring and jamming-tolerant control of an electro-mechanical flight actuator with differential ball screws[J]. Actuators, 2021, 10(9): 230. |
18 | 颉宏宇. 系统参数不确定情况下永磁同步电机控制策略研究[D]. 成都: 电子科技大学, 2021: 14-23. |
XIE H Y. Research on control strategy of permanent magnet synchronous motor with uncertain system parameters[D]. Chengdu: University of Electronic Science and Technology of China, 2021:14-23 (in Chinese). | |
19 | 何晶晶, 高亚奎, 张家盛. 液压伺服作动系统力纷争敏感度及机理研究[J]. 测控技术, 2018, 37(10): 39-43. |
HE J J, GAO Y K, ZHANG J S. Sensitivity and mechanism for force fighting of servo-hydraulic actuation system[J]. Measurement & Control Technology, 2018, 37(10): 39-43 (in Chinese). | |
20 | SIALA H, MHENNI F, BARKALLAH M, et al. Parametric tolerance specification of an electromechanical actuator[C]∥ 2018 12th France-Japan and 10th Europe-Asia Congress on Mechatronics. Piscataway: IEEE Press, 2018: 269-273. |
21 | LI T, YANG T, CAO Y Y, et al. Disturbance-estimation based adaptive backstepping fault-tolerant synchronization control for a dual redundant hydraulic actuation system with internal leakage faults[J]. IEEE Access, 2019, 7: 73106-73119. |
/
〈 |
|
〉 |