Fluid Mechanics and Flight Mechanics

Comparative analysis of Reynolds stress and eddy viscosity models in separation flow prediction

  • Yatian ZHAO ,
  • Zhiyuan SHAO ,
  • Chao YAN ,
  • Xinghao XIANG
Expand
  • 1.School of Traffic and Transportation Engineering,Central South University,Changsha 410083,China
    2.School of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China
    3.China Aerodynamics Research and Development Center,Mianyang 621000,China

Received date: 2022-06-14

  Revised date: 2022-06-29

  Accepted date: 2022-08-10

  Online published: 2022-08-31

Supported by

National Natural Science Foundation of China(11902367);Natural Science Foundation of Hunan Province(S2021JJQNJJ2716);State Key Laboratory of Aerodynamics(SKLA-20200202)

Abstract

The demand for accurate prediction of flow separation in modern aircraft design is becoming increasingly urgent, yet the prediction results of the widely used eddy viscosity model are not satisfactory. With its solid theoretical foundation, the Reynolds stress model may obtain more reliable results; however, its performance advantages still need to be further evaluated and explored. In this paper, the shear stress transport model and stress baseline model are selected as the representatives of the eddy viscosity model and Reynolds stress model, respectively, and numerical simulations are carried out for two-dimensional hump, two-dimensional transonic bump and three-dimensional transonic ONERA M6 wing. Compared with the experimental values, the prediction results of the two models show that the flow separation point is ahead of time and the reattachment point lags behind, while the prediction error of the Stress BSL model is smaller, showing the advantage of separation flow prediction under strong reverse pressure gradient. It is found that the two models underestimate the Reynolds stress, resulting in a large separation zone. Specifically, the Bradshaw hypothesis introduced into the SST model limits the generation of turbulent kinetic energy, reduces the eddy viscosity coefficient calculated by the model, underestimates the Reynolds stress in the boundary layer under strong adverse pressure gradient, and leads to early flow separation. The smaller Reynolds stress prediction value at the upper edge of the separation zone is considered to be the main cause for the lag of flow reattachment. For the Reynolds stress model, the error mainly originates from the inaccurate modeling of the redistribution term of the Reynolds stress transport equation. Finally, aiming at the above causes, we recalibrate and preliminarily verify the key closure parameters of the SST model. The results show that the modified model performs better than the original model.

Cite this article

Yatian ZHAO , Zhiyuan SHAO , Chao YAN , Xinghao XIANG . Comparative analysis of Reynolds stress and eddy viscosity models in separation flow prediction[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(11) : 127619 -127619 . DOI: 10.7527/S1000-6893.2022.27619

References

1 DRIVER D M, SEEGMILLER H L, MARVIN J G. Time-dependent behavior of a reattaching shear layer[J]. AIAA Journal198725(7): 914-919.
2 BUSH R H, CHYCZEWSKI T S, DURAISAMY K, et al. Recommendations for future efforts in RANS modeling and simulation[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 0317.
3 EISFELD B, RUMSEY C, TOGITI V. Verification and validation of a second-moment-closure model[J]. AIAA Journal201654(5): 1524-1541.
4 RUMSEY C L. Application of Reynolds stress models to separated aerodynamic flows[M]∥EISFELD B. Differential Reynolds Stress Modeling for Separating Flows in Industrial Aerodynamics. Cham: Springer, 2015: 19-37.
5 RUMSEY C L, RIVERS S M, MORRISON J H. Study of CFD variation on transport configurations from the second drag-prediction workshop[J]. Computers & Fluids200534(7): 785-816.
6 WILCOX D C. Turbulence Modeling for CFD[M]. 3rd edition. San Diego: DCW Industries, 2006.
7 董义道, 王东方, 王光学, 等. 雷诺应力模型的初步应用[J]. 国防科技大学学报201638(4): 46-53.
  DONG Y D, WANG D F, WANG G X, et al. Preliminary application of Reynolds stress model[J]. Journal of National University of Defense Technology201638(4): 46-53 (in Chinese).
8 阎超, 屈峰, 赵雅甜, 等. 航空航天CFD物理模型和计算方法的述评与挑战[J]. 空气动力学学报202038(5): 829-857.
  YAN C, QU F, ZHAO Y T, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics[J]. Acta Aerodynamica Sinica202038(5): 829-857 (in Chinese).
9 SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences: NASA/CR-2014-218178[R]. Hampton: NASA Langley Research Center, 2014.
10 RUMSEY C, VATSA V. A comparison of the predictive capabilities of several turbulence models using upwind and central-difference computer codes[C]∥31st Aerospace Sciences Meeting. Reston: AIAA, 1993: 192.
11 WANG S Y, DONG Y D, DENG X G, et al. High-order simulation of aeronautical separated flows with a reynold stress model[J]. Journal of Aircraft201855(3): 1177-1190.
12 舒博文, 杜一鸣, 高正红, 等. 典型航空分离流动的雷诺应力模型数值模拟[J]. 航空学报202243(11): 487-502.
  SHU B W, DU Y M, GAO Z H, et al. Numerical simulation of Reynolds stress model of typical aerospace separated flow[J]. Acta Aeronautica et Astronautica Sinica202243(11): 487-502 (in Chinese).
13 熊莉芳, 林源, 李世武. k?ε湍流模型及其在FLUENT软件中的应用[J]. 工业加热200736(4): 13-15.
  XIONG L F, LIN Y, LI S W. k?ε turbulent model and its application to the FLUENT[J]. Industrial Heating200736(4): 13-15 (in Chinese).
14 MENTER F R, EGOROV Y. The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description[J]. Flow, Turbulence and Combustion201085(1): 113-138.
15 刘宏康, 陈坚强, 向星皓, 等. 改进k?ω?γ转捩模式对不同雷诺数下HIAD的转捩预测[J]. 航空学报202243(12): 126868.
  LIU H K, CHEN J Q, XIANG X H, et al. Transition prediction for HIAD at different Reynolds number by improved k?ω?γ transition model[J]. Acta Aeronautica et Astronautica Sinica202243(12):126868 (in Chinese).
16 GREENBLATT D, PASCHAL K B, YAO C S, et al. Experimental investigation of separation control part 1: baseline and steady suction[J]. AIAA Journal200644(12): 2820-2830.
17 GREENBLATT D, PASCHAL K B, YAO C S, et al. Experimental investigation of separation control part 2: Zero mass-flux oscillatory blowing[J]. AIAA Journal200644(12): 2831-2845.
18 BACHALO W D, JOHNSON D A. Transonic, turbulent boundary-layer separation generated on an axisymmetric flow model[J]. AIAA Journal198624(3): 437-443.
19 Mayeur J, Dumont A, Destarac D, et al. RANS simulations on TMR test cases and M6 wing with the Onera elsA flow solver[J]. AIAA Paper20151745: 2015.
20 DEMUREN A, SARKAR S. Systematic study of Reynolds stress closure models in the computations of plane channel flows[R]. Hampton: Institute for Computer Applications in Science and Engineering, 1992.
21 PANDA J P, WARRIOR H V, MAITY S, et al. An improved model including length scale anisotropy for the pressure strain correlation of turbulence[J]. Journal of Fluids Engineering2017139(4): 044503.
22 LAUNDER B E, REECE G J, RODI W. Progress in the development of a Reynolds-stress turbulence closure[J]. Journal of Fluid Mechanics197568(3): 537-566.
23 SPEZIALE C G, SARKAR S, GATSKI T B. Modelling the pressure–strain correlation of turbulence: an invariant dynamical systems approach[J]. Journal of Fluid Mechanics1991227: 245-272.
24 CéCORA R D, RADESPIEL R, EISFELD B, et al. Differential Reynolds-stress modeling for aeronautics[J]. AIAA Journal201453(3): 739-755.
25 王圣业, 符翔, 杨小亮, 等. 高阶矩湍流模型研究进展及挑战[J]. 力学进展202151(1): 29-61.
  WANG S Y, FU X, YANG X L, et al. Progresses and challenges of high-order-moment turbulence closure[J]. Advances in Mechanics202151(1): 29-61 (in Chinese).
26 MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal199432(8): 1598-1605.
27 GALVáN S, REGGIO M, GUIBAULT F. Assessment study of K-? turbulence models and near-wall modeling for steady state swirling flow analysis in draft tube using fluent[J]. Engineering Applications of Computational Fluid Mechanics20115(4): 459-478.
28 TOMINAGA Y, STATHOPOULOS T. Numerical simulation of dispersion around an isolated cubic building: comparison of various types of k?? models[J]. Atmospheric Environment200943(20): 3200-3210.
29 WILCOX D C. Formulation of the k-w turbulence model revisited[J]. AIAA Journal200846(11): 2823-2838.
30 BRADSHAW P, FERRISS D H, ATWELL N P. Calculation of boundary-layer development using the turbulent energy equation[J]. Journal of Fluid Mechanics196728(3): 593.
31 KAEWBUMRUNG, TANGSOPA, THONGSRI. Investigation of the trailing edge modification effect on compressor blade aerodynamics using SST k?ω turbulence model[J]. Aerospace20196(4): 48.
32 ZHAO Y T, YAN C, WANG X Y, et al. Uncertainty and sensitivity analysis of SST turbulence model on hypersonic flow heat transfer[J]. International Journal of Heat and Mass Transfer2019136: 808-820.
Outlines

/