Drag reduction by the laminar flow control technology can significantly reduce aircraft friction and thus exhibits important application prospects. Laminar X-plane is a flight test platform designed to verify the laminar wing design technology. The hybrid laminar flow test section is mainly used to verify the delay effect of the leading-edge suction on the transition position. For the hybrid laminar flow wing, the design constraint analysis and preliminary design of the hybrid laminar flow test section are first conducted, and the high-speed aerodynamic optimization design of the wing, pod and pylon shape is then carried out. On this basis, the effects of different suction distributions on suction power, flow rate and transition delay are studied, and the optimal distribution is determined. Finally, the transition characteristics of the final optimized configuration are examined through numerical calculation and wind tunnel tests. The results show that the optimized hybrid laminar flow test section has good aerodynamic characteristics, and the transition suppression effect of the leading-edge suction on the crossflow instability wave can be verified at the design point. The compromised suction distribution can ensure the suction effect in most areas of the suction zone and reduce the suction power and flow rate. This study has reference significance for the optimization design of the hybrid laminar wing shape and suction strategy.
ZHAO Yan
,
DUAN Zhuoyi
,
DING Xingzhi
,
YANG Tihao
,
WANG Meng
. Optimization design of hybrid laminar flow control wing for flight test[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022
, 43(11)
: 527539
-527539
.
DOI: 10.7527/S1000-6893.2022.27539
[1] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报, 2011, 32(5):765-784. ZHU Z Q, WU Z C, DING J C. Laminar flow control technology and application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):765-784(in Chinese).
[2] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese).
[3] 李权, 段卓毅, 张彦军, 等. 民机自然层流机翼研究进展[J]. 航空工程进展, 2013, 4(4):399-406. LI Q, DUAN Z Y, ZHANG Y J. et al. Progress inresearch on natural laminar wing for civil aircraft[J]. Advance in Aeronautical Science and Engineering, 2013, 4(4):399-406(in Chinese).
[4] 杨一雄, 杨体浩, 白俊强, 等. HLFC后掠翼优化设计的若干问题[J]. 航空学报, 2018, 39(1):121448. YANG Y X, YANG T H, BAI J Q, et al. Problems in optimization design of HLFC sweep wing[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121448(in Chinese).
[5] PRALITS J O. Optimization design of natural and hybrid laminar flow control on wings[D]. Stockholm:Royal Institute of Technology, 2003.
[6] BECK N. Drag reduction by laminar flow control[J]. Energies, 2018, 11(1):252.
[7] KRISHNAN K S G, BERTRAM O, SEIBEL O. Review of hybrid laminar flow control systems[J]. Progress in Aerospace Sciences, 2017, 93:24-52.
[8] LAWSON S, CIARELLA A, WONG P W. Development of experimental techniques for hybrid laminar flow control in the ARA transonic wind tunnel[C]//2018 Applied Aerodynamics Conference. Reston:AIAA, 2018:3181.
[9] SAEED T I, GRAHAM W R, HALL C A. Boundary-layer suction system design for laminar-flying-wing aircraft[J]. Journal of Aircraft, 2011, 48(4):1368-1379.
[10] RISSE K, SCHUELTKE F, STUMPF E, et al. Conceptual wing design methodology for aircraft with hybrid laminar flow control[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014:0023.
[11] 史亚云, 郭斌, 刘倩, 等. 基于能量观点的混合层流优化设计[J]. 北京航空航天大学学报, 2019, 45(6):1162-1174. SHI Y Y, GUO B, LIU Q, et al. Hybrid laminar flow optimization design from energy view[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6):1162-1174(in Chinese).
[12] 杨体浩, 白俊强, 史亚云, 等. 考虑吸气分布影响的HLFC机翼优化设计[J]. 航空学报, 2017, 38(12):121158. YANG T H, BAI J Q, SHI Y Y, et al. Optimization design for HLFC wings considering influence of suction distribution[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121158(in Chinese).
[13] GREEN J. Laminar flow control-Back to the future?[C]//38th Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2008:3738.
[14] MARTIN M, CARPENTER A, SARIC W. Swept-wing laminar flow control studies using Cessna O-2A test aircraft[M]//2008 US Air Force T & E Days. 2008:1636.
[15] DRAKE A, SOLOMON W. Flight testing of a 30-degree sweep laminar flow wing for a high-altitude long-endurance aircraft[C]//28th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2010:4571.
[16] BELISLE M, NEALE T, REED H, et al. Design of a swept-wing laminar flow control flight experiment for transonic aircraft[C]//28th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2010:4381.
[17] MICHAEL R, ALEXANDER V, STEIN J. Design and manufacturing of a safety-critical aircraft Krueger flap[C]//SAMPE Europe Conference 2016. Covina:SAMPE, 2016:247-254.
[18] PHILIPSEN I, POSTMA J, ARTOIS K. Wind tunnel test on the breakthrough laminar aircraft demonstrator Europe in the DNW-LLF[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015:1561.
[19] SCHMITT V, AECHAMBAUD J P, HORTSTMANN K H, et al. Hybrid laminar fin investigations:ADP011101[R]. Chȃtillon:Office National d'Etudes et de Recherches Aerospatialea Toulouse (France), 2001.
[20] WAGNER R D, MADDALON D V, CLARK R L, et al. High Reynolds number hybrid laminar flow control (HLFC) flight Experiment:IV. Suction system design and manufacture:NASA/CR-1999-209326[R]. Hampton:NASA Langley Research Center, 1999.
[21] 钟海, 王启, 杨体浩. 层流翼型阻力测量试飞技术研究[J]. 飞行力学, 2021, 39(2):33-38. ZHONG H, WANG Q, YANG T H. Research on flight test technology for drag measurement of laminar airfoil[J]. Flight Dynamics, 2021, 39(2):33-38(in Chinese).
[22] SMITH A M O. Transition, pressure gradient and stability theory:ES 26388[R]. Long Beach:Douglas Aircraft Co., 1956.
[23] VAN INGEN J L. A suggested semi-empirical method for the calculation of the boundary layer transition region:VTH-74[R]. Deft:Technische Hogeschool Delft, 1956.
[24] Dagenhart J R, Saric W S. Crossflow stability and transition experiments in swept-wing flow:TP-1999-209344[R]. Hampton:NASA Langley Research Center, 1999.