ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Aerodynamic drag reduction device based on rear wind energy harvesting
Received date: 2022-07-01
Revised date: 2022-07-27
Accepted date: 2022-08-03
Online published: 2022-08-17
Supported by
National Natural Science Foundation of China(11672135)
In this study, the plate and wind turbine are coupled on the rear of the vehicle (hereinafter referred to as “the composite device”). Numerical calculation for the flow field around the vehicle at Reynolds number Re=1.43×106 is conducted adopting the Reynolds Average Navier-Stokes(RANS) model and actuator line model. Three cases (that of no control, that with the plate control, and that with the composite control) are compared based on the flow field and aerodynamic force. In the composite control, the total effect of drag reduction can be divided into three parts, in which the pressure on the rear of the vehicle is increased, the friction on the slope decreased, and the thrust generated by the wind turbine. Moreover, the influence of the plate length is discussed based on the effect of drag reduction for the composite device. The results show that both the drag reduction effects of the plate and the wind turbine increase first and then decrease with the increase of the plate length. The attainable maximum drag reduction is 19.5%.
Key words: flow control; drag reduction; flow separation; plate; wind turbine
Yating FENG , Hui ZHANG . Aerodynamic drag reduction device based on rear wind energy harvesting[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(S2) : 180 -191 . DOI: 10.7527/S1000-6893.2022.27740
1 | 傅立敏. 汽车设计与空气动力学[M].北京: 机械工业出版社,2011: 54. |
FU L M. Automobile design and aerodynamics [M].Beijing: Machinery Industry Press, 2011: 54 (in Chinese). | |
2 | VINO G, WATKINS S, MOUSLEY P, et al. Flow structures in the near-wake of the Ahmed model[J]. Journal of Fluids and Structures, 2005, 20(5): 673-695. |
3 | LIU K, BF Z, YC Z, et al. Flow structure around a low-drag Ahmed body[J]. Journal of Fluid Mechanics, 2021, 913(421): A21. |
4 | SELLAPPAN P, MCNALLY J, ALVI F S. Time-averaged three-dimensional flow topology in the wake of a simplified car model using volumetric PIV[J]. Experiments in Fluids, 2018, 59(8): 124. |
5 | YAO W G, ZHANG H, JIANG D W, et al. Mode transformations of vortex shedding behind a sphere with the effect of Lorentz force[J]. Physics of Fluids, 2021, 33(12): 123601. |
6 | 汪怡平, 郭承奇, 王涛, 等. 基于自由变形技术的Ahmed模型气动减阻优化[J]. 北京理工大学学报, 2018, 38(3): 221-228. |
WANG Y P, GUO C Q, WANG T, et al. Aerodynamic drag reduction of Ahmed model based on free form deformation[J]. Transactions of Beijing Institute of Technology, 2018, 38(3): 221-228 (in Chinese). | |
7 | EVSTAFYEVA O, MORGANS A S, LONGA L D. Simulation and feedback control of the Ahmed body flow exhibiting symmetry breaking behaviour[J]. Journal of Fluid Mechanics, 2017, 817(1): 2-12. |
8 | 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027. |
ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese). | |
9 | 孟宣市, 宋科, 龙玥霄, 等. NS-SDBD等离子体流动控制研究现状与展望[J]. 空气动力学学报, 2018, 36(6): 901-916. |
MENG X S, SONG K, LONG Y X, et al. Airflow control by NS-SDBD plasma actuators[J]. Acta Aerodynamica Sinica, 2018, 36(6): 901-916 (in Chinese). | |
10 | 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405. |
WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405 (in Chinese). | |
11 | 惠政. 基于等离子体主动流动控制的车辆减阻研究[D]. 长春: 吉林大学, 2020: 49-82. |
HUI Z. Research on vehicle drag reduction based on plasma active flow control[D]. Changchun: Jilin University, 2020: 49-82 (in Chinese). | |
12 | HULUKA A W, KIM C H. A numerical analysis on ducted Ahmed model as a new approach to improve aerodynamic performance of electric vehicle[J]. International Journal of Automotive Technology, 2021, 22(2): 291-299. |
13 | PUJALS G, DEPARDON S, COSSU C. Drag reduction of a 3D bluff body using coherent streamwise streaks[J]. Experiments in Fluids, 2010, 49(5): 1085-1094. |
14 | 胡海豹, 宋保维, 刘占一, 等. 沟槽表面边界层湍动能分布规律[J]. 航空学报, 2009, 30(10): 1823-1828. |
HU H B, SONG B W, LIU Z Y, et al. Research on characteristics of turbulence kinetic energy in boundary layer over riblet surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1823-1828 (in Chinese). | |
15 | VISWANATHAN H. Aerodynamic performance of several passive vortex generator configurations on an Ahmed body subjected to yaw angles[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(3): 131. |
16 | 吴瀚, 王建宏, 黄伟, 等. 激波/边界层干扰及微型涡流发生器控制研究进展[J]. 航空学报, 2021, 42(6): 025371. |
WU H, WANG J H, HUANG W, et al. Research progress on shock wave/boundary layer interactions and flow controls induced by micro vortex generators[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 025371 (in Chinese). | |
17 | BEARMAN P W. Investigation of the flow behind a two-dimensional model with a blunt trailing edge and fitted with splitter plates[J]. Journal of Fluid Mechanics, 1965, 21(2): 241. |
18 | FOURRIé G, KEIRSBULCK L, LABRAGA L, et al. Bluff-body drag reduction using a deflector[J]. Experiments in Fluids, 2011, 50(2): 385-395. |
19 | STRORMS B L, SATRAN D R, HEINECK J T,et al. Detailed experimental results of drag-reduction concepts on a generic tractor-trailer[C]∥ SAE Commercial Vehicle Engineering Conference, 2005. |
20 | TIAN J, ZHANG Y C, ZHU H, et al. Aerodynamic drag reduction and flow control of Ahmed body with flaps[J]. Advances in Mechanical Engineering, 2017, 9(7): 485-537. |
21 | 王汉封, 张运平, 邹超. 导流板对25°倾角Ahmed类车体尾流与气动阻力的影响[J]. 实验流体力学, 2014, 28(1): 31-37. |
WANG H F, ZHANG Y P, ZOU C. Effects of deflectors on the wake and aerodynamic drag of a 25° slant angle Ahmed model[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(1): 31-37 (in Chinese). | |
22 | 杨志刚, 范亚军, 夏超, 等. 基于双稳态尾迹的方背Ahmed模型减阻[J]. 吉林大学学报(工学版), 2020, 50(5): 1635-1644. |
YANG Z G, FAN Y J, XIA C, et al. Drag reduction of a square-back Ahmed model based on bi-stable wake[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(5): 1635-1644 (in Chinese). | |
23 | EVRARD A, CADOT O, HERBERT V, et al. Fluid force and symmetry breaking modes of a 3D bluff body with a base cavity[J]. Journal of Fluids and Structures, 2016, 61: 99-114. |
24 | BAHRAM K, HUEY C K, IACCARINO G. Unsteady aerodynamic flow investigation around a simplified square-back road vehicle with drag reduction devices[J]. Journal of Fluids Engineering, 2012, 134(6): 061101. |
25 | 王勋年, 李士伟, 陈立. 采用尾部隔板降低类客车体阻力的研究[J]. 实验流体力学, 2011, 25(2): 58-62. |
WANG X N, LI S W, CHEN L. Investigation on reducing drag of the bus-like body using tail clapboards[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(2): 58-62 (in Chinese). | |
26 | 许建民. 基于尾部减阻装置的厢式货车减阻效果研究[J]. 机械设计, 2019, 36(6): 72-79. |
XU J M. Study on the drag-reduction effect of trucks based on the dragreduction device at the truck tail[J]. Journal of Machine Design, 2019, 36(6): 72-79 (in Chinese). | |
27 | AHMED S, RAMM G, FAITIN G. Some salient features of the time-averaged ground vehicle wake:SAE-TP-840300[R]. Pennsylvania: SAE, 1984. |
28 | BASTANKHAH M, PORTé-AGEL F, BLAABJERG F. A new miniature wind turbine for wind tunnel experiments. part Ⅱ: Wake structure and flow dynamics[J]. Energies, 2017, 10(7): 923. |
29 | RESOR B R. Definition of a 5 MW/61.5 m wind turbine blade reference model: SAND2013-2569 463454[R]. Albuquerque: USDOE National Nuclear Security Administration, 2013. |
30 | S?RENSEN J N, SHEN W Z, MUNDUATE X. Analysis of wake states by a full‐field actuator disc model[J]. Wind Energy, 1998, 1(2): 73-88. |
31 | JOSEPH P, AMANDOLèSE X, AIDER J L. Drag reduction on the 25° slant angle Ahmed reference body using pulsed jets[J]. Experiments in Fluids, 2012, 52(5): 1169-1185. |
/
〈 |
|
〉 |