Electronics and Electrical Engineering and Control

New method for automatic and rapid mining of aero-engine operating patterns

  • Pei PENG ,
  • Yongping ZHAO ,
  • Yuwei WANG
Expand
  • 1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2.Beijing Aeronautical Technology Research Center,Beijing 100076,China

Received date: 2022-06-21

  Revised date: 2022-07-11

  Accepted date: 2022-08-03

  Online published: 2022-08-17

Supported by

National Science and Technology Major Project(J2019-I-0010-0010);Fundamental Research Funds for the Central Universities(NS2022027)

Abstract

To process multi-dimensional time-series data collected from aero-engine sensors, previous methods tend to focus on the identification of a single sample point and the proposed models often contain a large number of parameters to be tuned, while the single-variable mining approach often ignores the influence of the delayed effect of the state parameters on the identification of working models. In addition, these methods poorly consider the case of large-scale processing of data containing transition state patterns. This paper proposes a new method, named AutoMiner, that can quickly and automatically mine the implied working patterns in multi-dimensional time-series data. The method solves for the combination of breakpoints, minimizing the encoding cost by constructing the encoding cost of the model. In the process of the encoding cost construction, the method of marker propagation is adopted to identify the working mode of each segment, generating soft labels to successfully solve the problem of identifying the transition state mode. Multiple experiments are conducted on the sensor data collected from an engine and presented visually. It is demonstrated that the AutoMiner method is superior to the comparison algorithms in terms of evaluation metrics for both temporal segmentation and pattern mining. In addition, the AutoMiner method supports parallelized computation with good transferability in more complex working pattern mining scenarios.

Cite this article

Pei PENG , Yongping ZHAO , Yuwei WANG . New method for automatic and rapid mining of aero-engine operating patterns[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(11) : 327659 -327659 . DOI: 10.7527/S1000-6893.2022.27659

References

1 曹明, 王鹏, 左洪福, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ:地面综合诊断、寿命管理和智能维护维修决策[J]. 航空学报202243(9): 625574.
  CAO M, WANG P, ZUO H F, et al. Current status, challenges and opportunities of civil aero-engine diagnostics & health management Ⅱ: Comprehensive off-board diagnosis, life management and intelligent condition based MRO[J]. Acta Aeronautica et Astronautica Sinica202243(9): 625574 (in Chinese).
2 奚之飞, 徐安, 寇英信, 等. 基于改进粒子群算法辨识Volterra级数的目标机动轨迹预测[J]. 航空学报202041(12): 324183.
  XI Z F, XU A, KOU Y X, et al. Target maneuver trajectory prediction based on Volterra series identified by improved particle swarm algorithm[J]. Acta Aeronautica et Astronautica Sinica202041(12): 324183 (in Chinese).
3 冯蕴雯, 潘维煌, 刘佳奇, 等. 基于机器学习的飞机动力装置运行可靠性[J]. 航空学报202142(4): 524732.
  FENG Y W, PAN W H, LIU J Q, et al. Operational reliability of aircraft power plant based on machine learning[J]. Acta Aeronautica et Astronautica Sinica202142(4): 524732 (in Chinese).
4 王志刚, 王业光, 杨宁, 等. 基于LSTM的飞行数据挖掘模型构建方法[J]. 航空学报202142(8): 525800.
  WANG Z G, WANG Y G, YANG N, et al. Construction method of flight data mining model based on LSTM[J]. Acta Aeronautica et Astronautica Sinica202142(8): 525800 (in Chinese).
5 王奕惟, 莫李平, 王奕首, 等. 基于全航段QAR数据和卷积神经网络的航空发动机状态辨识[J]. 航空动力学报202136(7): 1556-1563.
  WANG Y W, MO L P, WANG Y S, et al. Aero-engine status identification based on full-segment QAR data and convolutional neural network[J]. Journal of Aerospace Power202136(7): 1556-1563 (in Chinese).
6 梁睿君, 冉文丰, 余传粮, 等. 基于CWT-CNN的齿轮箱运行故障状态识别[J]. 航空动力学报202136(12): 2465-2473.
  LIANG R J, RAN W F, YU C L, et al. Recognition of gearbox operation fault state based on CWT-CNN[J]. Journal of Aerospace Power202136(12): 2465-2473 (in Chinese).
7 BARDET J, CYNTHIA F, LACAILLE J, et al. Unequal time series clustering applied on flight data[C]∥12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM), 2017.
8 FAURE C, BARDET J M, OLTEANU M, et al. Comparison of three algorithms for parametric change-point detection[C]∥European Symposium on Neural Networks (ESANN), 2016: 2-7.
9 KEHAGIAS A, NIDELKOU E, PETRIDIS V. A dynamic programming segmentation procedure for hydrological and environmental time series[J]. Stochastic Environmental Research and Risk Assessment200620(1): 77-94.
10 WANG P, WANG H X, WANG W. Finding semantics in time series[C]∥Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2011: 385-396.
11 HALLAC D, NYSTRUP P, BOYD S. Greedy Gaussian segmentation of multivariate time series[J]. Advances in Data Analysis and Classification201913(3): 727-751.
12 MATSUBARA Y, SAKURAI Y, FALOUTSOS C. AutoPlait: Automatic mining of co-evolving time sequences[C]∥Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2014: 193-204.
13 TAKAHASHI T, HOOI B, FALOUTSOS C. AutoCyclone: Automatic mining of cyclic online activities with robust tensor factorization[C]∥Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 213-221.
14 WANG J D, WANG F, ZHANG C S, et al. Linear neighborhood propagation and its applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence200931(9): 1600-1615.
15 RISSANEN J. A universal prior for integers and estimation by minimum description length[J]. The Annals of Statistics198311(2): 416-431.
16 KIM H, ADELI H. Discrete cost optimization of composite floors using a floating-point genetic algorithm[J]. Engineering Optimization200133(4): 485-501.
17 WITTEN D M, TIBSHIRANI R. Covariance-regularized regression and classification for high-dimensional problems[J]. Journal of the Royal Statistical Society Series B, Statistical Methodology, 200971(3): 615-636.
18 ZHAO M B, ZHANG Z, CHOW T W S, et al. Soft label based linear discriminant analysis for image recognition and retrieval[J]. Computer Vision and Image Understanding2014121: 86-99.
19 KEOGH E, CHU S, HART D, et al. Segmenting time series: A survey and novel approach[M]∥LAST M, KANDEL A, BUNKE H. Data Mining in Time Series Databases. Singapore: World Scientific, 2004: 1-21.
20 LEE C H, LIN C R, CHEN M S. Sliding-window filtering: an efficient algorithm for incremental mining[C]∥Proceedings of the Tenth International Conference on Information and Knowledge Management. New York: ACM, 2001: 263-270.
21 JERONYMO D C, BORGES Y C C, DOS SANTOS COELHO L. Image forgery detection by semi-automatic wavelet soft-thresholding with error level analysis[J]. Expert Systems with Applications201785: 348-356.
22 GARREAU D, ARLOT S. Consistent change-point detection with kernels[J]. Electronic Journal of Statistics201812(2): 4440-4486.
23 LIN J F S, KARG M, KULI? D N. Movement primitive segmentation for human motion modeling: A framework for analysis[J]. IEEE Transactions on Human-Machine Systems201646(3): 325-339.
24 GHARGHABI S, YEH C C M, DING Y F, et al. Domain agnostic online semantic segmentation for multi-dimensional time series[J]. Data Mining and Knowledge Discovery201933(1): 96-130.
25 VAN D M L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research20089: 2579-2605.
Outlines

/