Articles

Natural laminar flow optimization and transition sensitivity analysis of axisymmetric nacelle

  • CAO Fan ,
  • ZHANG Meifang ,
  • HU Xiao ,
  • TANG Zhili
Expand
  • Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2022-04-27

  Revised date: 2022-07-04

  Online published: 2022-08-17

Supported by

National Natural Science Foundation of China (12032011,11772154);A Project Funded by the Priority Academia Program Development of Jiangsu Higher Education Institutions (PAPD)

Abstract

The turbofan engine nacelle with a large bypass ratio has large friction drag. At a high Reynolds number, reducing the friction drag on the nacelle surface using the Natural Laminar Flow (NLF) is an effective measure to reduce the total drag of the nacelle. To improve the efficiency of aerodynamic optimization, a hybrid evolutionary/deterministic optimization algorithm is developed, and, combined with a 6th order Class and Shape Transformation (CST) parameterization and a turning model, it is applied to the design of axisymmetric nacelles with NLF and geometric constraints at a high Reynolds number. Sensitivity studies on the local geometry sensitivity, the Mass Flow Ratio (MFR) and the Mach number (Ma) of the designed axisymmetric laminar nacelle are conducted to maintain stable laminar flow performance. The results show that the hybrid optimization algorithm can significantly improve the optimization efficiency and is successfully applied to the nacelle aerodynamic shape optimization. Under the influence of univariate geometric parameters, the head region of the nacelle shape has the most significant effect on the pressure distribution and laminar flow range, which is the key area of concern for laminar flow design. The variation of the flow coefficient and Mach number causes the large fluctuation of the laminar flow range. The designed nacelle can maintain the laminar flow in the range of more than 20% at the design point MFR=0.7 and Ma=0.85.

Cite this article

CAO Fan , ZHANG Meifang , HU Xiao , TANG Zhili . Natural laminar flow optimization and transition sensitivity analysis of axisymmetric nacelle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(11) : 527330 -527330 . DOI: 10.7527/S1000-6893.2022.27330

References

[1] 刘凯礼, 司江涛, 赵克良, 等. 大涵道比发动机通流短舱阻力特性修正数值研究[J]. 推进技术, 2019, 40(5):978-985. LIU K L, SI J T, ZHAO K L, et al. Numerical study of large bypass ratio engine through flow nacelle on drag characteristic correction[J]. Journal of Propulsion Technology, 2019, 40(5):978-985(in Chinese).
[2] QUADRIO M, RICCO P. The laminar generalized Stokes layer and turbulent drag reduction[J]. Journal of Fluid Mechanics, 2011, 667:135-157.
[3] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese).
[4] YOUNGHANS J, LAHTI D. Analytical and experimental studies on natural laminar flow nacelles[C]//22nd Aerospace Sciences Meeting. Reston:AIAA, 1984.
[5] RADESPIEL R, HORSTMANN K H, REDEKER G. Feasibility study on the design of a laminar flow nacelle[J]. Journal of Aircraft, 2015, 10(11):959-965.
[6] LIN Y J, ROBINSON T, EARLY J, et al. Implementation of menter's transition model on an isolated natural laminar flow nacelle[J]. AIAA Journal, 2011, 49(4):824-835.
[7] VERMEERSCH O, BOUTEILLER X. Numerical study of laminar nacelles:Natural and hybrid laminar flow designs[J]. International Journal of Engineering Systems Modelling & Simulation, 2014, 6(3/4):191-204.
[8] BARRY B, PARKE S J, BOWN N W, et al. The flight testing of natural and hybrid laminar flow nacelles[C]//American Society of Mechanical Engineers. Netherlands:ASME, 1994.
[9] E HASTINGS SCHOENSTER J, OBARA C, et al. Flight research on natural laminar flow nacelles:A progress report[C]//22nd Joint Propulsion Conference. Reston:AIAA, 2014.
[10] RIEDEL H, HORSTMANN K H, RONZHEIMER A, et al. Aerodynamic design of a natural laminar flow nacelle and the design validation by flight testing[J]. Aerospace Science and Technology, 1998, 2(1):1-12.
[11] MALIK M R, CROUCH J D, SARIC W S, et al. Application of drag reduction techniques to transport aircraft[M]. New Jersey:John Wiley & Sons Limited, 2015.
[12] 何小龙, 白俊强, 夏露, 等. 基于EFFD方法的自然层流短舱优化设计[J]. 航空动力学报, 2014, 29(10):2311-2320. HE X L, BAI J Q, XIA L, et al. Natural laminar flow nacelle optimization design based on EFFD method[J]. Journal of Aerospace Power, 2014, 29(10):2311-2320(in Chinese).
[13] 孟晓轩, 白俊强, 张美红, 等. 基于双eN方法的短舱层流转捩影响因素[J]. 航空学报, 2019, 40(11):123040. MENG X X, BAI J Q, ZHANG M H, et al. Laminar transition influencing factors of nacelle based on double eN method[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11):123040(in Chinese).
[14] WANG S Y, SUN G, LI C H. Natural laminar flow optimization of transonic nacelle based on differential evolution algorithm[J]. Journal of Aerospace Engineering, 2019, 32(4):06019001.
[15] 杜玺, 闫海津, 吴宇昂, 等. 跨声速自然层流短舱气动设计和风洞试验研究[J]. 航空科学技术, 2019, 30(9):63-72. DU X, YAN H J, WU Y A, et al. Aerodynamic design and wind tunnel test of a transonic natural laminar flow nacelle[J]. Aeronautical Science & Technology, 2019, 30(9):63-72(in Chinese).
[16] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-part I:Model formulation[J]. Journal of Turbomachinery, 2006, 128(3):413-422.
[17] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[18] 乔磊, 白俊强, 华俊, 等. 扩散作用对γ-Reθt模型转捩预测的影响[J]. 航空计算技术, 2013, 43(5):78-81. QIAO L, BAI J Q, HUA J, et al. Influence of diffusion effects on γ-Reθt ransition prediction[J]. Aeronautical Computing Technique, 2013, 43(5):78-81(in Chinese).
[19] LANGTRY R B.A correlation based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart:University Stuttgart, 2006.
[20] Somers D M. Design and experimental results for a natural laminar flow airfoil for general aviation applications:NASA-TP-1861[R]. Washington, D.C.:NASA,1981.
[21] LEE J D, JAMESON A. Natural-laminar-flow airfoil and wing design by adjoint method and automatic transition prediction[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009.
[22] TINOCO E N, BRODERSEN O, KEYE S, et al. Summary of data from the sixth AIAA CFD drag prediction workshop:CRM cases 2 to 5[C]//55th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2017.
[23] 关晓辉, 李占科, 宋笔锋. CST气动外形参数化方法研究[J]. 航空学报, 2012, 33(4):625-633. GUAN X H, LI Z K, SONG B F. A study on CST aerodynamic shape parameterization method[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4):625-633(in Chinese).
[24] 闫海津, 杜玺. 一种可变流量系数的通气短舱匹配方法[J]. 航空学报, 2018, 39(12):122379. YAN H J, DU X. A matching method for variable mass flow ratio for through-flow nacelle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122379(in Chinese).
[25] GOLDBERG D E, VOESSNER S. Optimizing global-local search hybrids[C]//Genetic and Evolutionary Computation Conference. San Francisco:Morgan Kaufmann, 1999:220-228.
[26] VICINI A, QUAGLIARELLA D. Airfoil and wing design through hybrid optimization strategies[J]. AIAA Journal, 1999, 37(5):634-641.
[27] TANG Z L, CHEN Y B, ZHANG L H. Natural laminar flow shape optimization in transonic regime with competitive Nash game strategy[J]. Applied Mathematical Modelling, 2017, 48:534-547.
[28] TANG Z L, HU X, PÉRIAUX J. Multi-level hybridized optimization methods coupling local search deterministic and global search evolutionary algorithms[J]. Archives of Computational Methods in Engineering, 2020, 27(3):939-975.
[29] BYRD R H, LU P H, NOCEDAL J, et al. A limited memory algorithm for bound constrained optimization[J]. SIAM Journal on Scientific Computing, 1995, 16(5):1190-1208.
[30] OPARA K R, ARABAS J. Differential Evolution:A survey of theoretical analyses[J]. Swarm and Evolutionary Computation, 2019, 44:546-558.
[31] HOLLAND J. Adaptation in natural and artificial systems[M]. Cambridge:MIT Press, 1992.
Outlines

/