Fluid Mechanics and Flight Mechanics

Research advances on heat and mass transfer coupling effect at gas-solid interface for thermal protection materials

  • ZHAO Jin ,
  • SUN Xiangchun ,
  • ZHANG Jun ,
  • TANG Zhigong ,
  • WEN Dongsheng
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
    2. China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2022-06-06

  Revised date: 2022-06-20

  Online published: 2022-08-08

Supported by

National Natural Science Foundation of China (52006004)

Abstract

Thermal Protection System (TPS) is essential for safe and efficient flying of hypersonic vehicles, and one of the major challenges is the complex non-linear coupling phenomena at the interface between the surrounding high enthalpy non-equilibrium environment and the thermal protection materials. The chemical reactions at the interface, including surface catalysis, oxidation and ablation, are concurrently conjugated with flow and heat transfer at the interface, significantly affecting TPS performance. This paper presents a state-of-the-art overview of flow and heat transfer coupling mechanism investigations at the gas-solid interface for typical thermal protection materials from four categories:experimental, theoretical, multiscale numerical simulation and artificial intelligence methods. A brief summary and outlook of the future challenges for aerothermodynamics research with heat and mass transfer coupling effect at the gas-solid interface is proposed.

Cite this article

ZHAO Jin , SUN Xiangchun , ZHANG Jun , TANG Zhigong , WEN Dongsheng . Research advances on heat and mass transfer coupling effect at gas-solid interface for thermal protection materials[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(10) : 527577 -527577 . DOI: 10.7527/S1000-6893.2022.27577

References

[1] CANDLER G V. Rate effects in hypersonic flows[J]. Annual Review of Fluid Mechanics, 2019, 51:379-402.
[2] GIMELSHEIN S F, WYSONG I J. Gas-phase recombination effect on surface heating in nonequilibrium hypersonic flows[J]. Journal of Thermophysics and Heat Transfer, 2018, 33(3):638-646.
[3] 孟松鹤, 金华, 王国林, 等. 热防护材料表面催化特性研究进展[J]. 航空学报, 2014, 35(2):287-302. MENG S H, JIN H, WANG G L, et al. Research advances on surface catalytic properties of thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):287-302 (in Chinese).
[4] 梁伟, 金华, 孟松鹤, 等. 高超声速飞行器新型热防护机制研究进展[J]. 宇航学报, 2021, 42(4):409-424. LIANG W, JIN H, MENG S H, et al. Research progress on new thermal protection mechanism of hypersonic vehicles[J]. Journal of Astronautics, 2021, 42(4):409-424 (in Chinese).
[5] 金华. 防热材料表面催化特性测试与评价方法研究[D]. 哈尔滨:哈尔滨工业大学, 2014. JIN H. Surface catalyticity properties testing and characterization methods of thermal protection materilas[D]. Harbin:Harbin Institute of Technology, 2014 (in Chinese).
[6] 王国林. 热防护设计中的气固非均相反应模型[D]. 哈尔滨:哈尔滨工业大学, 2019. WANG G L. Gas-solid heterogeneous reaction model for thermal protection design[D]. Harbin:Harbin Institute of Technology, 2019 (in Chinese).
[7] KARIMI M S, OBOODI M J. Investigation and recent developments in aerodynamic heating and drag reduction for hypersonic flows[J]. Heat and Mass Transfer, 2019, 55(2):547-569.
[8] WANG Z H, YU Y L, BAO L. Heat transfer in nonequilibrium flows with homogeneous and heterogeneous recombination reactions[J]. AIAA Journal, 2018, 56(9):3593-3599.
[9] YANG X F, GUI Y W, XIAO G M, et al. Reacting gas-surface interaction and heat transfer characteristics for high-enthalpy and hypersonic dissociated carbon dioxide flow[J]. International Journal of Heat and Mass Transfer, 2020, 146:118869.
[10] 杨肖峰, 李芹, 杜雁霞, 等. 高超声速飞行器界面多相催化数值研究进展[J]. 航空学报, 2021, 42(12):625908. YANG X F, LI Q, DU Y X, et al. Progress in numerical research on interface heterogeneous catalysis of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12):625908 (in Chinese).
[11] 朱燕伟. 热防护材料热环境与烧蚀热响应辨识方法研究[D]. 哈尔滨:哈尔滨工业大学, 2018. ZHU Y W. Research on the identification of the thermal environment and the thermal ablation response of thermal protection materials[D]. Harbin:Harbin Institute of Technology, 2018 (in Chinese).
[12] BIANCHI D, MIGLIORINO M T, ROTONDI M, et al. Numerical analysis and wind tunnel validation of low-temperature ablators undergoing shape change[J]. International Journal of Heat and Mass Transfer, 2021, 177:121430.
[13] ZHU Y H, PENG W, XU R N, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2018, 31(10):1929-1953.
[14] UYANNA O, NAJAFI H. Thermal protection systems for space vehicles:A review on technology development, current challenges and future prospects[J]. Acta Astronautica, 2020, 176:341-356.
[15] 黄鹏, 郑振荣, 毛科铸, 等. 热阻塞效应在有机硅树脂-碳纤织物复合材料烧蚀防热中的作用[J]. 复合材料学报, 2021, 38(9):3045-3055. HUANG P, ZHENG Z R, MAO K Z, et al. Effect of heat blockage on ablative thermal protection of silicone resin-carbon fiber fabrics[J]. Acta Materiae Compositae Sinica, 2021, 38(9):3045-3055 (in Chinese).
[16] ZHU Y D, LEE C B, CHEN X, et al. Newly identified principle for aerodynamic heating in hypersonic flows[J]. Journal of Fluid Mechanics, 2018, 855:152-180.
[17] ZHU Y D, CHEN X, WU J Z, et al. Aerodynamic heating in transitional hypersonic boundary layers:Role of second-mode instability[J]. Physics of Fluids, 2018, 30(1):011701.
[18] ZHU Y D, GU D W, ZHU W, et al. Dilatational-wave-induced aerodynamic cooling in transitional hypersonic boundary layers[J]. Journal of Fluid Mechanics, 2021, 911:A36.
[19] ZENG Y, WANG D N, XIONG X, et al. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000℃[J]. Nature Communications, 2017, 8:15836.
[20] WRIGHT M, HUGHES M F, BARNHARDT M, et al. An overview of technology investments in the NASA entry systems modeling project[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015:1892.
[21] LACHAUD J, MANSOUR N N. Porous-material analysis toolbox based on OpenFOAM and applications[J]. Journal of Thermophysics and Heat Transfer, 2014, 28(2):191-202.
[22] KIM I, YANG Y, PARK G. Effect of titanium surface roughness on oxygen catalytic recombination in a shock tube[J]. Acta Astronautica, 2020, 166:260-269.
[23] DE CESARE M, SAVINO L, CEGLIA G, et al. Applied radiation physics techniques for diagnostic evaluation of the plasma wind and thermal protection system critical parameters in aerospace re-entry[J]. Progress in Aerospace Sciences, 2020, 112:100550.
[24] FU L, KARP M, BOSE S T, et al. Shock-induced heating and transition to turbulence in a hypersonic boundary layer[DB/OL]. arXiv preprint:2010.10571, 2020.
[25] VASIL'EVSKII S A, KOLESNIKOV A, YAKUSHIN M. Determination of the effective probabilities of the heterogeneous recombination of atoms when heat flow in influenced by gas-phase reactions[J]. High Temperature, 1991, 29:411-419.
[26] VLASOV A V, ZALOGIN G N, ZEMLYANSKII B A, et al. Methods and results of an experimental determination of the catalytic activity of materials at high temperatures[J]. Fluid Dynamics, 2003, 38(5):815-825.
[27] KOVALEV V L, KOLESNIKOV A F, KRUPNOV A A, et al. Analysis of phenomenological models describing the catalytic properties of high-temperature reusable coatings[J]. Fluid Dynamics, 1996, 31(6):910-919.
[28] KUROTAKI T. Construction of catalytic model on SiO2-based surface and application to real trajectory[C]//34th Thermophysics Conference. Reston:AIAA, 2000:2366.
[29] MIZUNO M, MORINO Y, YOSHINAKA T, et al. Evaluation of reaction rate constants for thermal protection materials in dissociated air flow[C]//33rd Thermophysics Conference. Reston:AIAA, 1999:3630.
[30] APPAR A, KUMAR R, NASPOORI S K. Conjugate flow-thermal analysis of a hypersonic reentry vehicle in the rarefied flow regime[J]. Physics of Fluids, 2022, 34(2):026107.
[31] HELBER B, TURCHI A, SCOGGINS J B, et al. Experimental investigation of ablation and pyrolysis processes of carbon-phenolic ablators in atmospheric entry plasmas[J]. International Journal of Heat and Mass Transfer, 2016, 100:810-824.
[32] VILADEGUT A, CHAZOT O. Empirical modeling of copper catalysis for enthalpy determination in plasma facilities[J]. Journal of Thermophysics and Heat Transfer, 2019, 34(1):26-36.
[33] DI RENZO M, URZAY J. Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies[J]. Journal of Fluid Mechanics, 2021, 912:A29.
[34] HOLLOWAY M E, HANQUIST K M, BOYD I D. Assessment of thermochemistry modeling for hypersonic flow over a double cone[J]. Journal of Thermophysics and Heat Transfer, 2020, 34(3):538-547.
[35] WANG Y Q, RISCH T K, KOO J H. Assessment of a one-dimensional finite element charring ablation material response model for phenolic-impregnated carbon ablator[J]. Aerospace Science and Technology, 2019, 91:301-309.
[36] NORMAN P, SCHWARTZENTRUBER T, COZMUTA I. A computational chemistry methodology for developing an oxygen-silica finite rate catalytic model for hypersonic flows[C]//42nd AIAA Thermophysics Conference. Reston:AIAA, 2011:3644.
[37] BALAT-PICHELIN M, BADIE J M, BERJOAN R, et al. Recombination coefficient of atomic oxygen on ceramic materials under earth re-entry conditions by optical emission spectroscopy[J]. Chemical Physics, 2003, 291(2):181-194.
[38] CARLETON K L, MARINELLI W J. Spacecraft thermal energy accommodation from atomic recombination[J]. Journal of Thermophysics and Heat Transfer, 1992, 6(4):650-655.
[39] DICKENS P G, SUTCLIFFE M B. Recombination of oxygen atoms on oxide surfaces. Part 1. Activation energies of recombination[J]. Transactions of the Faraday Society, 1964, 60:1272-1285.
[40] KIM Y C, BOUDART M. Recombination of oxygen, nitrogen, and hydrogen atoms on silica:Kinetics and mechanism[J]. Langmuir, 1991, 7(12):2999-3005.
[41] STEWART D. Determination of surface catalytic efficiency for thermal protection materials-Room temperature to their upper use limit[C]//31st Thermophysics Conference. Reston:AIAA, 1996:1863.
[42] RUTIGLIANO M, CACCIATORE M. Recombination of oxygen atoms on silica surface:New and more accurate results[J]. Journal of Thermophysics and Heat Transfer, 2015, 30(1):247-250.
[43] TATAR M. Two-dimensional study of charring ablative materials using finite volume method[J]. International Journal of Thermal Sciences, 2021, 159:106642.
[44] BRUNE A J, BRUCE W E, GLASS D E, et al. Computational predictions of the hypersonic material environmental test system arcjet facility[J]. Journal of Thermophysics and Heat Transfer, 2018, 33(1):199-209.
[45] APPAR A, KUMAR R. Effect of thermal ablation at the fluid-solid interface of a hypersonic reentry vehicle in rarefied flow regime[J]. International Journal of Computational Fluid Dynamics, 2021, 35(8):610-631.
[46] VAN DUIN A C T, DASGUPTA S, LORANT F, et al. ReaxFF:A reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41):9396-9409.
[47] CHENOWETH K, VAN DUIN A C T, GODDARD W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. The Journal of Physical Chemistry A, 2008, 112(5):1040-1053.
[48] SENFTLE T P, HONG S, ISLAM M M, et al. The ReaxFF reactive force-field:Development, applications and future directions[J]. NPJ Computational Materials, 2016, 2:15011.
[49] VLACHAS P R, ARAMPATZIS G, UHLER C, et al. Multiscale simulations of complex systems by learning their effective dynamics[J]. Nature Machine Intelligence, 2022, 4(4):359-366.
[50] GRILLI M, SCHMID P J, HICKEL S, et al. Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 700:16-28.
[51] YASUDA S, YAMAMOTO R. A model for hybrid simulations of molecular dynamics and computational fluid dynamics[J]. Physics of Fluids, 2008, 20(11):113101.
[52] SMITH E R, TREVELYAN D J, RAMOS-FERNANDEZ E, et al. CPL library-A minimal framework for coupled particle and continuum simulation[J]. Computer Physics Communications, 2020, 250:107068.
[53] ROOHI E, ZHANG Y H. Advances in micro/nano fluid flows:In memory of Professor Jason Reese[J]. Physics of Fluids, 2021, 33(4):040402.
[54] VINUESA R, BRUNTON S L. Enhancing computational fluid dynamics with machine learning[DB/OL]. arXiv preprint:2110.02085, 2021.
[55] 杨强, 孟松鹤, 仲政, 等. 力学研究中"大数据"的启示、应用与挑战[J]. 力学进展, 2020, 50:406-449. YANG Q, MENG S H, ZHONG Z, et al. Big Data in mechanical research:Potentials, applications and challenges[J]. Advances in Mechanics, 2020, 50:406-449 (in Chinese).
[56] JARMATZ P, MAURER F, WITTENBERG H, et al. MaMiCo:Non-local means and POD filtering with flexible data-flow for two-way coupled molecular-continuum HPC flow simulation[J]. Journal of Computational Science, 2022, 61:101617.
[57] WANG K, CHEN Y, MEHANA M, et al. A physics-informed and hierarchically regularized data-driven model for predicting fluid flow through porous media[J]. Journal of Computational Physics, 2021, 443:110526.
[58] BUHENDWA A B, BEZGIN D A, ADAMS N A. Consistent and symmetry preserving data-driven interface reconstruction for the level-set method[J]. Journal of Computational Physics, 2022, 457:111049.
[59] BEZGIN D A, SCHMIDT S J, ADAMS N A. A data-driven physics-informed finite-volume scheme for nonclassical under compressive shocks[J]. Journal of Computational Physics, 2021, 437:110324.
[60] RIBEIRO M D, REHMAN A, AHMED S, et al. DeepCFD:Efficient steady-state laminar flow approximation with deep convolutional neural networks[DB/OL]. arXiv preprint:2004.08826, 2020.
[61] GUO T Q, SHEN E N, LU Z L, et al. Thermal flutter prediction at trajectory points of a hypersonic vehicle based on aerothermal synchronization algorithm[J]. Aerospace Science and Technology, 2019, 94:105381.
[62] REN X M, ZHANG M, NIE H. Optimization of multilayer thermal protection system by using phase change material under aerodynamic heating[J]. Applied Thermal Engineering, 2021, 191:116677.
[63] CHEN F, LIU H, ZHANG S T. Coupled heat transfer and thermo-mechanical behavior of hypersonic cylindrical leading edges[J]. International Journal of Heat and Mass Transfer, 2018, 122:846-862.
[64] 林烈, 吴彬, 吴承康. 高温气流中材料表面催化特性研究[J]. 空气动力学学报, 2001, 19(4):407-413. LIN L, WU B, WU C K. Studies on surface catalytic effect of materials in a high-temperature gas flow[J]. Acta Aerodynamica Sinica, 2001, 19(4):407-413 (in Chinese).
[65] 董维中, 乐嘉陵, 刘伟雄. 驻点壁面催化速率常数确定的研究[J]. 流体力学实验与测量, 2000, 14(3):1-6. DONG W Z, LE J L, LIU W X. The determination of catalytic rate constant of surface materials of testing model in the shock tube[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(3):1-6 (in Chinese).
[66] YANG X F, XIAO G M, DU Y X, et al. Heat transfer with interface effects in high-enthalpy and high-speed flow:Modelling review and recent progress[J]. Applied Thermal Engineering, 2021, 195:116721.
[67] YU Q J, YANG X F, NIU J Q, et al. Aerodynamic thermal environment around transonic tube train in choked/unchoked flow[J]. International Journal of Heat and Fluid Flow, 2021, 92:108890.
[68] 粟斯尧, 石义雷, 柳森, 等. 有限催化对返回舱气动热环境影响[J]. 空气动力学学报, 2018, 36(5):878-884. SU S Y, SHI Y L, LIU S, et al. Finite-rate surface catalysis effects on aero-heating environment of a reentry capsule[J]. Acta Aerodynamica Sinica, 2018, 36(5):878-884 (in Chinese).
[69] LI Q, NIE L, ZHANG K L, et al. Experimental investigation on aero-heating of rudder shaft within laminar/turbulent hypersonic boundary layers[J]. Chinese Journal of Aeronautics, 2019, 32(5):1215-
[70] 孟松鹤, 叶雨玫, 杨强, 等. 数字孪生及其在航空航天中的应用[J]. 航空学报, 2020, 41(9):023615. MENG S H, YE Y M, YANG Q, et al. Digital twin and its aerospace applications[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9):023615 (in Chinese).
[71] ZHUO L J, MENG S H, YI F J. The use of cooled axial conduction guarded probe for the measurement of transient heat flux by calibrating the unit step response[J]. International Journal of Heat and Mass Transfer, 2020, 147:118850.
[72] LI W, FANG G D, LI W J, et al. Numerical investigation of mesoscopic volumetric ablation of 3D braided charring composites[J]. Applied Thermal Engineering, 2020, 181:116016.
[73] ZHU Y W, YI F J, MENG S H, et al. Multiphysical behavior of a lightweight ablator:Experiments, modeling, and analysis[J]. Journal of Spacecraft and Rockets, 2017, 55(1):106-115.
[74] WANG Z, WANG R X, SONG H W, et al. Decoupling mechanisms of "avalanche" phenomenon for laser ablation of C/SiC composites in hypersonic airflow environment[J]. International Journal of Thermal Sciences, 2022, 173:107414.
[75] 姜宗林. 高超声速高焓风洞试验技术研究进展[J]. 空气动力学学报, 2019, 37(3):347-355. JIANG Z L. Progresses on experimental techniques of hypersonic and high-enthalpy wind tunnels[J]. Acta Aerodynamica Sinica, 2019, 37(3):347-355 (in Chinese).
[76] 苑朝凯, 姜宗林. 高超声速高焓条件下的内嵌式温敏漆测量方法[J]. 力学学报, 2022, 54(1):48-58. CHAO K Y, JIANG Z L. Measurement method of embedded temperature sensitive paint under hypersonic high enthalpy conditions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1):1-11 (in Chinese).
[77] LI B, LI H J, YAO X Y, et al. Ablation behavior of sharp leading edge parts made of rare earth La-compound modified ZrB2 coated C/C composites[J]. Corrosion Science, 2020, 175:108895.
[78] GOU J J, CHANG Y, YAN Z W, et al. The design of thermal management system for hypersonic launch vehicles based on active cooling networks[J]. Applied Thermal Engineering, 2019, 159:113938.
[79] SHI S B, LI L J, LIANG J, et al. Surface and volumetric ablation behaviors of SiFRP composites at high heating rates for thermal protection applications[J]. International Journal of Heat and Mass Transfer, 2016, 102:1190-1198.
[80] CUI Z L, ZHAO J, YAO G C, et al. Competing effects of surface catalysis and ablation in hypersonic reentry aerothermodynamic environment[J]. Chinese Journal of Aeronautics, 2021
[81] CUI Z L, ZHAO J, YAO G C, et al. Molecular insight of the interface evolution of silicon carbide under hyperthermal atomic oxygen impact[J]. Physics of Fluids, 2022, 34(5):052101.
[82] CUI Z L, ZHAO J, HE L C, et al. A reactive molecular dynamics study of hyperthermal atomic oxygen erosion mechanisms for graphene sheets[J]. Physics of Fluids, 2020, 32(11):112110.
[83] CUI Z L, YAO G C, ZHAO J, et al. Atomistic-scale investigations of hyperthermal oxygen-graphene interactions via reactive molecular dynamics simulation:The gas effect[J]. Physics of Fluids, 2021, 33(5):052107.
[84] ZHANG J, JOHN B, PFEIFFER M, et al. Particle-based hybrid and multiscale methods for nonequilibrium gas flows[J]. Advances in Aerodynamics, 2019, 1(1):12.
[85] LIU H Y, ZHANG J, CAPOBIANCHI P, et al. A multiscale volume of fluid method with self-consistent boundary conditions derived from molecular dynamics[J]. Physics of Fluids, 2021, 33(6):062004.
[86] REN X, YUAN J Y, HE B J, et al. Grid criteria for numerical simulation of hypersonic aerothermodynamics in transition regime[J]. Journal of Fluid Mechanics, 2019, 881:585-601.
[87] GUO J H, LIN G P, BU X Q, et al. Parametric study on the heat transfer of a blunt body with counterflowing jets in hypersonic flows[J]. International Journal of Heat and Mass Transfer, 2018, 121:84-96.
[88] GAO Z X, XUE H C, ZHANG Z C, et al. A hybrid numerical scheme for aeroheating computation of hypersonic reentry vehicles[J]. International Journal of Heat and Mass Transfer, 2018, 116:432-444.
[89] ZHAO Y T, YAN C, WANG X Y, et al. Uncertainty and sensitivity analysis of SST turbulence model on hypersonic flow heat transfer[J]. International Journal of Heat and Mass Transfer, 2019, 136:808-820.
[90] YANG X F, GUI Y W, TANG W, et al. Surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow[J]. Acta Astronautica, 2018, 147:445-453.
[91] WANG B, WANG J T. Application of artificial intelligence in computational fluid dynamics[J]. Industrial & Engineering Chemistry Research, 2021, 60(7):2772-2790.
[92] LIU J, WANG M, LI S. The rapid data-driven prediction method of coupled fluid-thermal-structure for hypersonic vehicles[J]. Aerospace, 2021, 8(9):265.
[93] 张智超, 高太元, 张磊, 等. 基于径向基神经网络的气动热预测代理模型[J]. 航空学报, 2021, 42(4):524167. ZHANG Z C, GAO T Y, ZHANG L, et al. Aeroheating agent model based on radial basis function neural network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524167 (in Chinese).
[94] TAO F, ZHANG H, LIU A, et al. Digital twin in industry:State-of-the-art[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4):2405-2415.
[95] TAO F, SUI F Y, LIU A, et al. Digital twin-driven product design framework[J]. International Journal of Production Research, 2019, 57(12):3935-3953.
Outlines

/