Reviews

Review on on⁃line monitoring of chatter in cutting process

  • Yiwen LI ,
  • Zhaohui DEND ,
  • Tao LIU ,
  • Rongjin ZHUO ,
  • Zhongyang LI ,
  • Lishu LV
Expand
  • 1.School of Mechanical Engineering,Hunan University of Science and Technology,Xiangtan 411201,China
    2.Institute of Manufacturing Engineering,Huaqiao University,Xiamen 361021,China
    3.Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult-to-Cut Materials,Hunan University of Science and Technology,Xiangtan 411201,China

Received date: 2022-05-31

  Revised date: 2022-06-12

  Accepted date: 2022-07-13

  Online published: 2022-08-08

Supported by

Special Fund for the Construction of Hunan Innovative Province(2020GK2003);NFSC-Zhejiang Joint Foundation for the Integration of Industrialization and Informatization(U1809221);Natural Science Foundation of Hunan Province of China(2020JJ4309);Municipal Joint Fund for Natural Science of Hunan Provincial(2021JJ50116)

Abstract

Chatter is a widespread problem in aerospace manufacturing and other fields. In-depth research on on-line monitoring of chatter in cutting process is of great significance to further improve the suppression effect of chatter and ensure the stable operation of machining system. According to the real-time and accuracy requirements of the chatter online monitoring, this paper focuses on data acquisition, online feature extraction, and chatter recognition. Firstly, the characteristics of three kinds of chatter data acquisition methods are summarized, and then the application of chatter features and the key factors affecting chatter feature extraction are elaborated and analyzed. Later, the characteristics of chatter recognition techniques based on the supervised and unsupervised learning are compared and summarized. Finally, problems existed in the current on-line chatter monitoring and the development trend in the future are discussed, which can provide reference for the research of on-line chatter monitoring in the future.

Cite this article

Yiwen LI , Zhaohui DEND , Tao LIU , Rongjin ZHUO , Zhongyang LI , Lishu LV . Review on on⁃line monitoring of chatter in cutting process[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(11) : 27562 -027562 . DOI: 10.7527/S1000-6893.2022.27562

References

1 DANG X B, WAN M, YANG Y. Prediction and suppression of chatter in milling of structures with low rigidity: A review[J]. Journal of Advanced Manufacturing Science and Technology20211(3): 2021010.
2 岳彩旭, 张俊涛, 刘献礼, 等. 薄壁件铣削过程加工变形研究进展[J]. 航空学报202243(4): 525164.
  YUE C X, ZHANG J T, LIU X L, et al. Research progress on machining deformation of thin-walled parts in milling process[J]. Acta Aeronautica et Astronautica Sinica202243(4): 525164 (in Chinese).
3 隋翯,张德远,陈华伟,等. 超声振动切削对耦合颤振的影响[J]. 航空学报201637(5): 1696-1704.
  SUI H, ZHANG D Y, CHEN H W, et al. Influence of ultrasonic vibration cutting on mode-coupling chatter[J]. Acta Aeronautica et Astronautica Sinica201637(5): 1696-1704 (in Chinese).
4 廖文和, 郑侃, 孙连军, 等. 大型复杂构件机器人加工稳定性研究进展[J].航空学报202243(1): 026061.
  LIAO W H, ZHENG K, SUN L J, et al. Review on chatter stability in robotic machining for large complex components[J]. Acta Aeronautica et Astronautica Sinica202243(1):026061 (in Chinese).
5 NIU J B, XU J T, REN F, et al. A short review on milling dynamics in low-stiffness cutting conditions: Modeling and analysis[J]. Journal of Advanced Manufacturing Science and Technology20211(1): 2020004.
6 YUE C X, GAO H N, LIU X L, et al. A review of chatter vibration research in milling[J]. Chinese Journal of Aeronautics201932(2): 215-242.
7 王志学, 刘献礼, 李茂月, 等. 切削加工颤振智能监控技术[J]. 机械工程学报202056(24): 1-23.
  WANG Z X, LIU X L, LI M Y, et al. Intelligent monitoring and control technology of cutting chatter[J]. Journal of Mechanical Engineering202056(24): 1-23 (in Chinese).
8 王燕山, 胡飞, 张梅菊, 等. 智能制造中的状态在线监测技术[J]. 测控技术201837(5): 3-8,19.
  WANG Y S, HU F, ZHANG M J, et al. Status online monitoring technology for intelligent manufacturing[J]. Measurement and Control Technology201837(5):3-8,19 (in Chinese).
9 余俊. 基于MTConnect的数控机床网络监测及能耗建模研究[D]. 武汉: 华中科技大学, 2018.
  YU J. Research on network monitoring and energy consumption modeling of NC machine tool based on MTConnect[D]. Wuhan: Huazhong University of Science and Technology, 2018 (in Chinese).
10 YAO Z H, MEI D Q, CHEN Z C. On-line chatter detection and identification based on wavelet and support vector machine[J]. Journal of Materials Processing Technology2010210(5): 713-719.
11 LIU Y, WANG X F, LIN J, et al. Early chatter detection in gear grinding process using servo feed motor current[J]. The International Journal of Advanced Manufacturing Technology201683(9-12): 1801-1810.
12 ABUL H M, ABU-BAKAR M H, RAZUWAN R, et al. Deep neural network tool chatter model for aluminum surface milling using acoustic emmision sensor[J]. MATEC Web of Conferences2018217: 03003.
13 任静波, 孙根正, 陈冰, 等. 基于多尺度排列熵的铣削颤振在线监测方法[J]. 机械工程学报201551(9): 206-212.
  REN J B, SUN G Z, CHEN B, et al. Multi-scale permutation entropy based on-line milling chatter detection method[J]. Journal of Mechanical Engineering201551(9): 206-212 (in Chinese).
14 LI K, HE S P, LI B, et al. A novel online chatter detection method in milling process based on multiscale entropy and gradient tree boosting[J]. Mechanical Systems and Signal Processing2020135(C): 106385.
15 SHRIVASTAVA Y, SINGH B, SHARMA A. Analysis of tool chatter in terms of chatter index and severity using a new adaptive signal processing technique[J]. Experimental Techniques201842(2): 141-153.
16 SRINIVASAN A, DORNFELD D, BHINGE R. Integrated vibration and acoustic data fusion for chatter and tool condition classification in milling[C]∥2016 International Symposium on Flexible Automation (ISFA). 2016.
17 TRAN M Q, LIU M K, ELSISI M. Effective multi-sensor data fusion for chatter detection in milling process[J]. ISA Transactions2022125:514-527.
18 吴石, 王洋洋, 刘献礼, 等. 铣削颤振过程非线性振动特性的在线分析[J]. 哈尔滨理工大学学报201823(1): 1-6.
  WU S, WANG Y Y, LIU X L, et al. Online analysis of nonlinear vibration characteristics of milling chatter[J]. Journal of Harbin University of Science and Technology201823(1):1-6 (in Chinese).
19 黄群, 王民, 昝涛, 等. 基于嵌入式系统的切削颤振在线监测技术研究[J]. 电子技术应用201036(3): 93-96.
  HUANG Q, WANG M, ZAN T, et al. Research of on-line monitoring of cutting chatter based on embedded system[J]. Application of Electronic Technique201036(3): 93-96 (in Chinese).
20 郑晓虎, 刘强, 孙鹏鹏, 等. 基于MTConnect的机床远程多功能监控系统[J]. 组合机床与自动化加工技术2018(10): 80-84.
  ZHENG X H, LIU Q, SUN P P, et al, Machine remote multifunctional monitoring system based on MTConnect[J]. Combined Machine Tool and Automatic Machining Technology2018(10): 80-84 (in Chinese).
21 赵盛烨, 吴文江, 佟敏, 等. 基于改进MFAC的智能数控系统设计与实现[J]. 吉林大学学报(信息科学版)202038(2): 160-171.
  ZHAO H Y, WU W J, TONG M, et al. Design and implementation of intelligent CNC system based on improved MFAC[J]. Journal of Jilin University (Information Science Edition)202038(2): 160-171 (in Chinese).
22 ABELE E, SIELAFF T, SCHIFFLER A. Method for chatter detection with standard PLC systems[J]. Production Engineering20126(6): 611-619.
23 庞长富, 王志明, 蔡正龙, 等. 基于PLC的六维力传感器的数据采集及应用[J]. 工业控制计算机201831(8): 15-16.
  PANG C F, WANG Z M, CAI Z L, et al. Data acquisition and application of six-dimensional force sensor based on PLC[J]. Industrial Control Computer201831(8): 15-16 (in Chinese).
24 李智,汪惠芬,刘婷婷,等. 面向制造过程的车间实时监控系统设计[J]. 机械设计与制造2013(3): 256-259.
  LI Z, WANG H F, LIU T T, et al. Design of workshop real-time monitoring system for manufacturing process[J]. Machinery Design & Manufacture2013(3): 256-259 (in Chinese).
25 徐永乐. 基于ARM9的数控机床数据采集系统的研究与开发[D]. 南京: 南京航空航天大学, 2011.
  XU Y L. research on data acquisition system of NC machine tool based on ARM9[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese).
26 MARINESCU I, AXINTE D A. An automated monitoring solution for avoiding an increased number of surface anomalies during milling of aerospace alloys[J]. International Journal of Machine Tools and Manufacture201151(4): 349-357.
27 LIU W, KONG C P, NIU Q, et al. A method of NC machine tools intelligent monitoring system in smart factories[J]. Robotics and Computer-Integrated Manufacturing202061(C): 101842-101842.
28 MAUTHNER G, EHRENDORFER M, TRAUTNER T, et al. Method for data-driven NC-code optimization based on dexel material removal simulation and tool holder vibration measurements[J]. Procedia CIRP2021104: 1131-1136.
29 WANG S M, HO C D, TSAI P C, et al. Study of an efficient real-time monitoring and control system for BUE and cutter breakage for CNC machine tools[J]. International Journal of Precision Engineering and Manufacturing201415(6): 1109-1115.
30 苏春燕, 孟祥懿, 崔建辉.基于C#联网数控机床运行监控与信息管理系统[J]. 制造技术与机床2021(4): 14-19.
  SU C Y, MENG X Y, CUI J H. Operation monitoring and production information management system of networked CNC machines based on C#[J]. Manufacturing Technology & Machine Tool2021(4): 14-19 (in Chinese).
31 胡磊. 大型薄壁件镜像加工装备软件系统研究与开发[D]. 大连: 大连理工大学, 2018.
  HU L. The research and development of the software system of the mirror milling equipment for large thin-walled parts[D]. Dalian: Dalian University Technology, 2018 (in Chinese).
32 单蒋楠. 基于开放式数控系统的数据采集及在线颤振监测平台的开发[D]. 哈尔滨: 哈尔滨工业大学, 2021.
  SHAN J N. Research on data acquisition and online chatter monitoring platform based on open numerical control system[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese).
33 刘献礼, 刘强, 岳彩旭, 等. 切削过程中的智能技术[J]. 机械工程学报201854(16): 45-61.
  LIU X L, LIU Q, YUE C X, et al. Intelligent machining technology in cutting process[J]. Journal of Mechanical Engineering201854(16): 45-61 (in Chinese).
34 龚帝武. 机床主轴振动状态在线监测方法研究与系统实现[D]. 成都: 电子科技大学, 2020.
  GONG D W. Research and implementation of online monitoring method for vibration state of machine tool spindle[D]. Chengdu: University of Electronic Science and Technology of China, 2020 (in Chinese).
35 LIU H Q, CHEN Q H, LI B, et al. On-line chatter detection using servo motor current signal in turning[J]. Science China Technological Sciences201154(12): 3119-3129.
36 LIU C F, GAO X J, CHI D X, et al. On-line chatter detection in milling using fast Kurtogram and frequency band power[J]. European Journal of Mechanics - A/Solids202190: 104341.
37 WANG L M, PAN J L, SHAO Y M, et al. Two new kurtosis-based similarity evaluation indicators for grinding chatter diagnosis under non-stationary working conditions[J]. Measurement2021176: 109215.
38 陈青海. 基于驱动电机电流信号的车削颤振在线监测方法研究[D]. 武汉: 华中科技大学, 2012.
  CHEN Q H. On-line chatter detection method based on drive motor current signal in turning[D]. Wuhan: Huazhong University of Science and Technology, 2012 (in Chinese).
39 CHEN Y, LI H Z, HOU L, et al. Feature extraction using dominant frequency bands and time-frequency image analysis for chatter detection in milling[J]. Precision Engineering201956: 235-245.
40 沈建洋. 基于BEMD与LSSVM的大型磨床磨削颤振在线检测方法研究[D]. 杭州: 浙江理工大学, 2017.
  SHEN J Y. An online BEMD and LSSVM based grinding chatter detection method for large grinding machine[D]. Hangzhou: Zhejiang Sci-Tech University, 2017 (in Chinese).
41 SCHMITZ T L, MEDICUS K, DUTTERER B. Exploring once-per-revolution audio signal variance as a chatter indicator[J]. Machining Science and Technology20026(2): 215-233.
42 谢锋云. 基于经验模态分解与神经网络的在线状态监测(英文)[J]. 机床与液压201341(24): 48-51.
  XIE F Y. On-line condition monitoring based on empirical mode decomposition and neural network(English) [J]. Machine Tool and Hydraulics201341(24): 48-51 (in Chinese).
43 YE J, FENG P F, XU C, et al. A novel approach for chatter online monitoring using coefficient of variation in machining process[J]. The International Journal of Advanced Manufacturing Technology201896(1-4): 287-297.
44 王民, 刘国付, 昝涛, 等. 基于控制图的磨削颤振预测方法[J]. 北京工业大学学报201541(9): 1296-1301.
  WANG M, LIU G F, ZAN T, et al, Prediction method of grinding chatter based on control chart[J]. Journal of Beijing University of Technology201541(9): 1296-1301 (in Chinese).
45 CHEN H G, SHEN J Y, CHEN W H, et al. Grinding chatter detection and identification based on BEMD and LSSVM[J]. Chinese Journal of Mechanical Engineering201932(1): 1.
46 LAMRAOUI M, BARAKAT M, THOMAS M, et al. Chatter detection in milling machines by neural network classification and feature selection[J]. Journal of Vibration and Control201521(7): 1251-1266.
47 张智, 刘成颖, 刘辛军, 等. 采用小波包能量熵的铣削振动状态分析方法研究[J]. 机械工程学报201854(21): 57-62.
  ZHANG Z, LIU C Y, LIU X J, et al. Analysis of milling vibration state based on the energy entropy of WPD[J]. Journal of Mechanical Engineering201854(21): 57-62 (in Chinese).
48 GARCíA P E, Nú?EZ LóPEZ P J. Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations[J]. Mechanical Systems and Signal Processing201898: 902-919.
49 TAO J F, QIN C J, XIAO D Y, et al. A pre-generated matrix-based method for real-time robotic drilling chatter monitoring[J]. Chinese Journal of Aeronautics201932(12): 2755-2764.
50 MOU W P, ZHU S W, JIANG Z X, et al. Vibration signal-based chatter identification for milling of thin walled structure[J]. Chinese Journal of Aeronautics202035(1): 204-214
51 LIU C F, ZHU L D, NI C B. Chatter detection in milling process based on VMD and energy entropy[J]. Mechanical Systems and Signal Processing2018105: 169-182.
52 ZHANG Z, LI H G, MENG G, et al. Chatter detection in milling process based on the energy entropy of VMD and WPD[J]. International Journal of Machine Tools and Manufacture2016108: 106-112.
53 JI Y J, WANG X B, LIU Z B, et al. EEMD based online milling chatter detection by fractal dimension and power spectral entropy[J]. The International Journal of Advanced Manufacturing Technology2020111(7-8): 1-2.
54 NAIR U, KRISHNA B M, NAMBOOTHIRI V N N, et al. Permutation entropy based real-time chatter detection using audio signal in turning process[J]. The International Journal of Advanced Manufacturing Technology201046(1-4): 61-68.
55 LI K, HE S P, LUO B, et al. Online chatter detection in milling process based on VMD and multiscale entropy[J]. The International Journal of Advanced Manufacturing Technology2019105(4): 5009-5022.
56 SUN W Y, ZHANG D H, LUO M. Machining process monitoring and application: a review[J]. Journal of Advanced Manufacturing Science and Technology20211(2): 2021001.
57 CUKA B, CHO M, KIM D W. Timely and efficient chatter onset detection for end-milling[J]. Procedia Manufacturing201817: 142-149.
58 汪晓姗, 彭志科, 陈是扦. 基于瞬时频率估计与Vold-Kalman滤波的铣削颤振识别[J]. 振动与冲击201837(16): 70-76.
  WANG X S, PENG Z K, CHEN S Q. Chatter detection in milling process based on instantaneous frequency estimation and the Vold-Kalman filter[J]. Journal of Vibration and Shock201837(16): 70-76 (in Chinese).
59 DONG X J, TU G W, WANG X S, et al. Real-time chatter detection via iterative Vold-Kalman filter and energy entropy[J]. The International Journal of Advanced Manufacturing Technology2021116(5-6): 2003-2019.
60 CHEN D, ZHANG X J, ZHAO H, et al. Development of a novel online chatter monitoring system for flexible milling process[J]. Mechanical Systems and Signal Processing2021159: 107799.
61 LIU C, XU W W, GAO L. Identification of milling chatter based on a novel frequency-domain search algorithm[J]. The International Journal of Advanced Manufacturing Technology2020109(9-12): 2393-2407.
62 WANG C X, ZHANG X W, CHEN X F, et al. Weak chatter detection in milling based on sparse dictionary[J]. Procedia Manufacturing202048: 839-843.
63 窦慧晶, 肖子恒, 杨帆. 基于改进稀疏度自适应匹配追踪算法的压缩感知DOA估计[J]. 北京工业大学学报202147(11):1239-1246.
  DOU H X, XIAO Z H, YANG F. Compressed sensing DOA estimation based on improved sparsity adaptive matching pursuit algorithm[J]. Journal of Beijing University of Technology202147(11):1239-1246 (in Chinese).
64 LIU Y, WANG X F, LIN J, et al. An adaptive grinding chatter detection method considering the chatter frequency shift characteristic[J]. Mechanical Systems and Signal Processing2020142(C): 106672.
65 THOMAZELLA R, LOPES W N, AGUIAR P R, et al. Digital signal processing for self-vibration monitoring in grinding: A new approach based on the time-frequency analysis of vibration signals[J]. Measurement2019145: 71-83.
66 UEKITA M, TAKAYA Y. Tool condition monitoring technique for deep-hole drilling of large components based on chatter identification in time–frequency domain[J]. Measurement2017103: 199-207.
67 李舜酩, 郭海东, 李殿荣. 振动信号处理方法综述[J]. 仪器仪表学报201334(8): 1907-1915.
  LI S M, GUO H D, LI D R. Review of vibration signal processing methods[J]. Chinese Journal of Scientific Instrument201334(8): 1907-1915 (in Chinese).
68 亓丽梅, 李晓峰, 张国柱. 小波变换思想及其在信号处理中的应用[J]. 电子科技大学学报2008(3): 386-388.
  QI L M, LI X F, ZHANG G Z. Wavelet transform theory and its application in signal processing[J]. Journal of University of Electronic Science and Technology of China2008(3): 386-388 (in Chinese).
69 WANG L, LIANG M. Chatter detection based on probability distribution of wavelet modulus maxima[J]. Robotics and Computer-Integrated Manufacturing200925(6): 989-998.
70 YUAN Y J, JING X B, LI H Z, et al. Chatter detection based on wavelet coherence functions in micro-end-milling processes[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture2019233(9): 1934-1945.
71 YAO Y C, CHEN Y H, LIU C H, et al. Real-time chatter detection and automatic suppression for intelligent spindles based on wavelet packet energy entropy and local outlier factor algorithm[J]. The International Journal of Advanced Manufacturing Technology2019103(1-4): 297-309.
72 李欣, 梅德庆, 陈子辰. 基于经验模态分解和希尔伯特-黄变换的精密孔镗削颤振特征提取[J]. 光学精密工程201119(6): 1291-1297.
  LI X, MEI D Q, CHEN Z C. Feature extraction of chatter for precision hole boring processing based on EMD and HHT[J]. Optics and Precision Engineering201119(6): 1291-1297 (in Chinese).
73 贾广飞, 孙师泽, 武哲. 经验模态分解在切削振动信号分析中的应用[J]. 河北工业科技201835(3): 215-219.
  JIA G F, SUN S Z, WU Z. Application of empirical mode decomposition in analyzing cutting vibration signal[J]. Hebei Journal of Industrial Science and Technology201835(3): 215-219 (in Chinese).
74 SHRIVASTAVA Y, SINGH B. Tool chatter prediction based on empirical mode decomposition and response surface methodology[J]. Measurement2020173: 108585.
75 LIU C F, ZHU L D, NI C B. The chatter identification in end milling based on combining EMD and WPD[J]. The International Journal of Advanced Manufacturing Technology201791(9-12): 3339-3348.
76 齐天, 裘焱, 吴亚锋. 利用聚合经验模态分解抑制振动信号中的模态混叠[J]. 噪声与振动控制201030(2): 103-106.
  QI T, QIU Y, WU Y F. Application of EEMD to suppression of mode mixing in oscillation signals[J]. Noise and Vibration Control201030(2): 103-106 (in Chinese).
77 FU Y, ZHANG Y, ZHOU H, et al. Timely online chatter detection in end milling process[J]. Mechanical Systems and Signal Processing201675: 668-688.
78 SHRIVASTAVA Y, SINGH B. A comparative study of EMD and EEMD approaches for identifying chatter frequency in CNC turning[J]. European Journal of Mechanics - A/Solids201873: 381-393.
79 SHRIVASTAVA Y, SINGH B. Online monitoring of tool chatter in turning based on ensemble empirical mode decomposition and Teager Filter[J]. Transactions of the Institute of Measurement and Control202042(6): 1166-1179.
80 WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis20091(1): 1-41.
81 SMITH J S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society interface20052(5): 443-454.
82 陈是扦, 彭志科, 周鹏. 信号分解及其在机械故障诊断中的应用研究综述[J]. 机械工程学报202056(17): 91-107.
  CHEN S Q, PENG Z K, ZHOU P. Review of signal decomposition theory and its applications in machine fault diagnosis[J]. Journal of Mechanical Engineering202056(17): 91-107 (in Chinese).
83 韩晓慧, 杜松怀, 苏娟, 等. 基于局部均值分解的触电故障信号瞬时参数提取[J]. 农业工程学报201531(17): 221-227.
  HAN X H, DU S H, SU J, et al. Extraction of biological electric shock signal instantaneous amplitude and frequency based on local mean decomposition[J]. Transactions of the Chinese Society of Agricultural Engineering201531(17): 221-227 (in Chinese).
84 GUPTA P, SINGH B. Analyzing chatter vibration during turning on computer numerical control lathe using ensemble local mean decomposition and probabilistic approach[J]. Noise & Vibration Worldwide202152(6): 168-180.
85 GUPTA P, SINGH B. Investigation of tool chatter using local mean decomposition and artificial neural network during turning of Al 6061[J]. Soft Computing202125: 11151-11174.
86 GUPTA P, SINGH B. Local mean decomposition and artificial neural network approach to mitigate tool chatter and improve material removal rate in turning operation[J]. Applied Soft Computing202096: 106714.
87 MISHRA R, SINGH B. Stability analysis in milling process using spline based local mean decomposition (SBLMD) technique and statistical indicators[J]. Measurement2021174: 108999.
88 LI X, WAN S, HUANG X, et al. Milling chatter detection based on VMD and difference of power spectral entropy[J]. The International Journal of Advanced Manufacturing Technology2020111(7-8): 2051-2063.
89 YANG K, WANG G, DONG Y, et al. Early chatter identification based on an optimized variational mode decomposition[J]. Mechanical Systems and Signal Processing2019115: 238-254.
90 LIU X L, WANG Z X, LI M Y, et al. Feature extraction of milling chatter based on optimized variational mode decomposition and multi-scale permutation entropy[J]. The International Journal of Advanced Manufacturing Technology2021114(9-10): 2849-2862.
91 ZHANG P F, GAO D, LU Y, et al. Online chatter detection in milling process based on fast iterative VMD and energy ratio difference[J]. Measurement2022194: 111060.
92 LIU T, DENG Z H, LUO C Y, et al. Chatter detection in camshaft high-speed grinding process based on VMD parametric optimization[J]. Measurement2022187: 110133.
93 ZHU L D, LIU C F. Recent progress of chatter prediction, detection and suppression in milling[J]. Mechanical Systems and Signal Processing2020143: 106840.
94 TANGJITSITCHAROEN S. In-process monitoring and detection of chip formation and chatter for CNC turning[J]. Journal of Materials Processing Technology2009209(10): 4682-4688.
95 LU K B, LIAN Z S, GU F S, et al. Model-based chatter stability prediction and detection for the turning of a flexible workpiece[J]. Mechanical Systems and Signal Processing2018100: 814-826.
96 CAO L, ZHANG X M, HUANG T, et al. An adaptive chatter signal enhancement approach for early fault diagnosis in machining process[J]. Procedia CIRP201982: 308-313.
97 张磊, 郑侃, 孙连军, 等. 基于小波包敏感频带选择的复材铣边颤振监测研究[J]. 机械工程学报202258(3): 140-148.
  ZHANG L, ZHENG K, SUN L J, et al. Investigation on chatter monitoring of composite milling edge based on the selection of sensitive frequency band of wavelet packet[J]. Journal of Mechanical Engineering202258(3): 140-148 (in Chinese).
98 TRAN M Q, LIU M K, TRAN Q V. Milling chatter detection using scalogram and deep convolutional neural network[J]. The International Journal of Advanced Manufacturing Technology2020107(3-4): 1505-1516.
99 SENER B, GUDELEK M U, OZBAYOGLU A M, et al. A novel chatter detection method for milling using deep convolution neural networks[J]. Measurement2021182: 109689.
100 CHERUKURI H, PEREZ-BERNABEU E, SELLES M A, et al. A neural network approach for chatter prediction in turning[J]. Procedia Manufacturing201934(C): 885-892.
101 KUMAR S, SINGH B. Prediction of tool chatter in turning using RSM and ANN[J]. Materials Today: Proceedings20185(11): 23806-23815.
102 ZHU W G, ZHUANG J C, GUO B S, et al. An optimized convolutional neural network for chatter detection in the milling of thin-walled parts[J]. The International Journal of Advanced Manufacturing Technology2020106(9-10): 3881-3895.
103 钱士才, 孙宇昕, 熊振华. 基于支持向量机的颤振在线智能检测[J]. 机械工程学报201551(20): 1-8.
  QIAN S C, SUN Y X, XIONG Z H. Support vector machine based online intelligent chatter detection[J]. Journal of Mechanical Engineering201551(20): 1-8 (in Chinese).
104 CHEN Y, LI H Z, HOU L, et al. An intelligent chatter detection method based on EEMD and feature selection with multi-channel vibration signals[J]. Measurement2018127: 356-365.
105 LI D D, ZHANG W M, LI Y S, et al. Chatter identification of thin-walled parts for intelligent manufacturing based on multi-signal processing[J]. Advances in Manufacturing20219(1): 22-33.
106 WAN S, LI X H, YIN Y J, et al. Milling chatter detection by multi-feature fusion and Adaboost-SVM[J]. Mechanical Systems and Signal Processing2021156: 107671.
107 REN Y K, DING Y. Online milling chatter identification using adaptive Hankel low-rank decomposition[J]. Mechanical Systems and Signal Processing2022169: 108758.
108 齐静, 徐坤, 丁希仑. 机器人视觉手势交互技术研究进展[J]. 机器人201739(4): 565-584.
  QI J, XU K, DING X L. Vision-based hand gesture recognition for human-robot interaction: a review[J]. Robot201739(4): 565-584 (in Chinese).
109 CHEN K H, ZHANG X, ZHAO Z, et al. Milling chatter monitoring under variable cutting conditions based on time series features[J]. The International Journal of Advanced Manufacturing Technology2021113(9-10): 2595-2613.
110 邵璐熠, 洪文. 基于二维极化特征的PolSAR图像决策分类[J]. 雷达学报20165(6): 681-691.
  SHAO L Y, HONG W. Decision tree classification of PolSAR image based on two-dimensional polarimetric features[J]. Journal of Radars20165(6): 681-691 (in Chinese).
111 WANG R, NIU J B, SUN Y W. Chatter identification in thin-wall milling using an adaptive variational mode de-composition method combined with the decision tree model[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture2020: 095440542093370.
112 周晓敏, 郝勇凯, 丛文韬, 等. 基于梯度提升决策树模型的冷连轧机颤振研究[J]. 振动与冲击202140(13): 154-158.
  ZHOU X M, HAO Y K, CONG W T. Chatter analysis of cold tandem rolling mills based on gradient boosted decision tree[J]. Journal of Vibration and Shock202140(13): 154-158 (in Chinese).
113 SHI F, CAO H R, ZHANG X W, et al. A reinforced k-nearest neighbors method with application to chatter identification in high speed milling[J]. IEEE Transactions on Industrial Electronics202067(12): 10844-10855.
114 YESILLI M C, KHASAWNEH F A, OTTO A. Chatter detection in turning using machine learning and similarity measures of time series via dynamic time warping[J]. Journal of Manufacturing Processes202277: 190-206.
115 韩振宇, 金鸿宇, 富宏亚. 基于ESPRIT频谱估计和隐马尔可夫模型的铣削颤振辨识系统建模[J]. 计算机集成制造系统201622(8): 1937-1944.
  HAN Z Y, JIN H Y, FU H Y. Modeling of chatter recognition system in CNC milling based on ESPRIT and hiddlen Markov model[J]. Computer Integrated Manufacturing System201622(8): 1937-1944 (in Chinese).
116 OLEAGA I, PARDO C, ZULAIKA J J, et al. A machine learning based solution for chatter prediction in heavy duty milling machines[J]. Measurement2018128: 34-44.
117 宫丽娜, 姜淑娟, 姜丽. 软件缺陷预测技术研究进展[J]. 软件学报201930(10): 3090-3114.
  GONG L N, JIANG S J, JIANG L. Research progress of software defect prediction[J]. Journal of Software201930(10): 3090-3114 (in Chinese).
118 张雪峰. 基于数据挖掘的铣削工艺系统动刚度研究[D]. 兰州: 兰州理工大学, 2021.
  ZHANG X F. Dynamic stiffness research of milling process system based on data mining[D]. Lanzhou: Lanzhou University of Technology, 2021 (in Chinese).
119 DUN Y C, ZHU L D, YAN B L, et al. A chatter detection method in milling of thin-walled TC4 alloy workpiece based on auto-encoding and hybrid clustering[J]. Mechanical Systems and Signal Processing2021158: 107755.
120 WANG Z Q, CUNHA C D, RITOU M, et al. Comparison of K-means and GMM methods for contextual clustering in HSM[J]. Procedia Manufacturing201928: 154-159.
121 DIAZ-ROZO J, BIELZA C, LARRA?AGA P. Machine-tool condition monitoring with Gaussian mixture models-based dynamic probabilistic clustering[J]. Engineering Applications of Artificial Intelligence202089: 103434.
122 汪晓姗. 基于多分量信号分解的铣削颤振识别[D]. 上海: 上海交通大学, 2018.
  WANG X S. Chatter detection in milling process based on multicomponent signal decomposition method[D]. Shanghai: Shanghai Jiao Tong University, 2018 (in Chinese).
Outlines

/