ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Solar information assisted pulse phase estimation method and navigation application
Received date: 2022-06-01
Revised date: 2022-06-20
Accepted date: 2022-07-12
Online published: 2022-08-03
Supported by
Science and Technology Innovation Program of Hunan Province(2021RC3078)
X-ray pulsar navigation is an emerging autonomous navigation method for spacecraft, with the pulse phase as its basic measurement. However, the existing on-orbit spacecraft pulse phase estimation methods require a large amount of computation, which hinders the engineering application of X-ray pulsar navigation. To reduce the computational complexity of pulse phase estimation, a pulse phase estimation method for deep space detectors assisted by solar information is proposed. The influence of the orbital motion of the spacecraft is roughly eliminated by the solar information. On this basis, an X-ray pulsar/solar information deep integrated navigation method is proposed, and the performance of the solar information assisted pulse phase estimation method and the integrated navigation method is verified by simulation. The simulation results show that the proposed pulse phase estimation method has less computational complexity while ensuring accuracy. In addition, for the deep space detector, the position error of the proposed integrated navigation method is reduced by 70.1% compared with the navigation method using only the solar information.
Yusong WANG , Yidi WANG , Wei ZHENG . Solar information assisted pulse phase estimation method and navigation application[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(S1) : 727651 -727651 . DOI: 10.7527/S1000-6893.2022.27651
1 | 李黎. 基于X射线脉冲星的航天器自主导航方法研究[D]. 长沙: 国防科技大学, 2006. |
LI L. The research of the navigation of spacecraft based on the X-ray pulsars[D]. Changsha: National University of Defense Technology, 2006 (in Chinese). | |
2 | CHESTER T, BUTMAN S. Navigation using X-ray pulsars: 19810018591[R]. Washington,D.C.: NASA, 1981. |
3 | MITCHELL J W, WINTERNITZ L B, HASSOUNEH M A, et al. SEXTANT X-ray pulsar navigation demonstration: Initial on-orbit results[C]∥American Astronautical Society 41st Annual Guidance and Control Conference. Springfield:AAS, 2018: 1229-1240. |
4 | 帅平, 刘群, 黄良伟, 等. 首颗脉冲星导航试验卫星及其观测结果[J]. 中国惯性技术学报, 2019, 27(3): 281-287. |
SHUAI P, LIU Q, HUANG L W, et al. Pulsar navigation test satellite XPNAV-1 and its observation results[J]. Journal of Chinese Inertial Technology, 2019, 27(3): 281-287 (in Chinese). | |
5 | 张大鹏, 王奕迪, 姜坤, 等. XPNAV-1卫星实测数据处理与分析[J]. 宇航学报, 2018, 39(4): 411-417. |
ZHANG D P, WANG Y D, JIANG K, et al. Measured data processing and analysis for XPNAV-1[J]. Journal of Astronautics, 2018, 39(4): 411-417 (in Chinese). | |
6 | 丁陶伟, 帅平, 黄良伟, 等. 基于扩展卡尔曼滤波的XPNAV-1卫星自主定轨算法研究[J]. 中国空间科学技术, 2021, 41(1): 13-21. |
DING T W, SHUAI P, HUANG L W, et al. An autonomous orbit determination algorithm of XPNAV-1 based on extended Kalman filtering[J]. Chinese Space Science and Technology, 2021, 41(1): 13-21 (in Chinese). | |
7 | ZHENG S J, ZHANG S N, LU F J, et al. In-orbit demonstration of X-ray pulsar navigation with the Insight-HXMT satellite[J].Astrophysical Journal Supplement Series, 2019, 244(1). |
8 | 张大鹏,呼延宗泊,李恒年.基于卫星实测数据的X射线脉冲星导航体制验证[J].航空学报,2023,44(3):116-123. |
ZHANG D P, HUYAN Z P, LI H N. X-ray pulsar-based navigation results based on measured data [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(3): 116-123 (in Chinese). | |
9 | 王奕迪. 深空探测中的X射线脉冲星导航方法研究[D]. 长沙: 国防科技大学, 2011. |
WANG Y D. Research on the X-ray pulsar-based navigation in deep space exploration[D]. Changsha: National University of Defense Technology, 2011 (in Chinese). | |
10 | EMADZADEH A A, SPEYER J L. X-ray pulsar-based relative navigation using epoch folding[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2317-2328. |
11 | EMADZADEH A A, SPEYER J L, GOLSHAN A R. Asymptotically efficient estimation of pulse time delay for X-ray pulsar based relative navigation:AIAA-2009-5974[R]. Reston: AIAA, 2009. |
12 | GOLSHAN A, SHEIKH S. On pulse phase estimation and tracking of variable celestial X-ray sources[C]∥ION 63rd Annual Meeting. Manassas:ION, 2007. |
13 | WANG Y D, ZHENG W. Pulse phase estimation of X-ray pulsar with the aid of vehicle orbital dynamics[J]. Journal of Navigation, 2016, 69(2): 414-432. |
14 | WANG Y D, ZHANG W. Pulsar phase and Doppler frequency estimation for XNAV using on-orbit epoch folding[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2210-2219. |
15 | 刘劲, 曾宪武, 房建成, 等. 基于星光多普勒的脉冲星脉冲到达时间补偿[J]. 华中科技大学学报(自然科学版), 2014, 42(1): 129-132. |
LIU J, ZENG X W, FANG J C, et al. Pulsar pulse time-of-arrival compensation based on star light Doppler[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2014, 42(1): 129-132 (in Chinese). | |
16 | WANG Y S, WANG Y D, ZHENG W, et al. Stellar angle-aided pulse phase estimation and its navigation application[J]. Aerospace, 2021, 8(9): 240. |
17 | EMADZADEH A A, SPEYER J L. On modeling and pulse phase estimation of X-ray pulsars[J]. IEEE Transactions on Signal Processing, 2010, 58(9): 4484-4495. |
18 | EMADZADEH A A, SPEYER J L. Navigation in space by X-ray pulsars[M]. New York: Springer, 2011. |
19 | WANG Y D, ZHENG W, ZHANG D P. X-ray pulsar/starlight Doppler deeply-integrated navigation method[J]. Journal of Navigation, 2017, 70(4): 829-846. |
/
〈 |
|
〉 |