ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Graphene-enhanced Fe3O4/ethylcellulose composite microspheres with wave absorption properties
Received date: 2022-05-31
Revised date: 2022-06-16
Accepted date: 2022-07-18
Online published: 2022-08-03
Supported by
National Natural Science Foundation of China(51575313);Open Fund of Hubei Provincial Engineering Research Center of Graphite Additive Manufacturing Technology and Equipment(HRCGAM202106);Open Fund of Yichang Key Laboratory of Graphite Additive Manufacturing(YKLGAM202005)
Multi-component composite materials are conducive to the realization of high-efficiency, light-weight and broadband absorbing effects, and have important research and application value in the aerospace field. Reduced Graphene Oxide (rGO)-Fe3O4/Ethyl Cellulose (Ec) composite microspheres with Ec as the skeleton were prepared by emulsification reaction, and the physical structure, microscopic morphology and electromagnetic properties of the composite microspheres were characterized and analyzed by X-Ray Diffractometer (XRD), Raman Spectroscopy (Raman), Scanning Electron Microscopy (SEM) and Vector Network Analyzer (VNA). The results show that the composite microspheres are ordered internally by the combination of Ec with rGO and Fe3O4, and Ec forms a rich porous structure, which enhances multiple reflection and scattering of microwaves. When the graphene content is 6.6wt% and the thickness is 1.8 mm, the minimum reflection loss (–30.35 dB) is achieved at 14.32 GHz, and the effective absorption bandwidth is 4.88 GHz (12.24–17.12 GHz).
Key words: graphene; composite; absorbing mechanism; impedance matching; Fe3O4
Yongsheng YE , Di DING , Haihua WU , Enyi HE , Shihao YIN , Zhenglang HU , Chao YANG . Graphene-enhanced Fe3O4/ethylcellulose composite microspheres with wave absorption properties[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(11) : 427549 -427549 . DOI: 10.7527/S1000-6893.2022.27549
1 | HARUSSANI M M, SAPUAN S M, NADEEM G, et al. Recent applications of carbon-based composites in defence industry: A review[J]. Defence Technology, 2022, 18(8): 1281-1300. |
2 | WANG Q, SUN LING NA, HU CHANG WEN, et al. Research of novel functional stealthy nanomaterials[J]. Advanced Materials Research, 2012, 534: 73-77. |
3 | KUZHIR P, VOLYNETS N, MAKSIMENKO S, et al. Multilayered graphene in Kα-band: Nanoscale coating for aerospace applications[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(8): 5864-5867. |
4 | 杨喜, 曹敏, 简煜, 等. 多孔木炭/Fe3O4复合吸波材料的制备与性能[J]. 复合材料学报, 2022, 39(10): 4590-4601. |
YANG X, CAO M, JIAN Y, et al. Preparation and microwave absorption properties of porous charcoal/Fe3O4 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4590-4601 (in Chinese). | |
5 | CAO M S, HAN C, WANG X X, et al. Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves[J]. Journal of Materials Chemistry C, 2018, 6(17): 4586-4602. |
6 | ZENG X J, YANG B, YANG H Z, et al. Solvothermal synthesis and good microwave absorbing properties for magnetic porous-Fe3O4/graphene nanocomposites[J]. AIP Advances, 2016, 7(5): 056605. |
7 | WANG H S, SHI P P, RUI M, et al. The green synthesis rGO/Fe3O4/PANI nanocomposites for enhanced electromagnetic waves absorption[J]. Progress in Organic Coatings, 2020, 139: 105476. |
8 | 李国显, 王涛, 薛海荣, 等. 石墨烯/Fe3O4复合材料的制备及电磁波吸收性能[J]. 航空学报, 2011, 32(9): 1732-1739. |
LI G X, WANG T, XUE H R, et al. Synthesis of graphene/Fe3O4 composite materials and their electromagnetic wave absorption properties[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1732-1739 (in Chinese). | |
9 | YANG Y N, XIA L, ZHANG T, et al. Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance[J]. Chemical Engineering Journal, 2018, 352: 510-518. |
10 | LIU Z C, XIANG Z, DENG B W, et al. Rational design of hierarchical porous Fe3O4/rGO composites with lightweight and high-efficiency microwave absorption[J]. Composites Communications, 2020, 22: 100492. |
11 | LI J C, ZHAO X Y, WU W J, et al. Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity[J]. Chemical Engineering Journal, 2021, 415: 129054. |
12 | XIANG Z, SONG Y M, XIONG J, et al. Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks[J]. Carbon, 2019, 142: 20-31. |
13 | 谢文瀚, 耿浩然, 柳扬, 等. MoS2/生物质碳复合材料的制备与吸波性能[J]. 复合材料学报, 2022, 39(5): 2238-2248. |
XIE W H, GENG H R, LIU Y, et al. Preparation and microwave absorbing properties of MoS2/biomass carbon composite[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2238-2248 (in Chinese). | |
14 | 马志军, 莽昌烨, 翁兴媛, 等. Zn还原氧化石墨烯(RGO)和ZnO/RGO自组装复合材料的电磁响应行为[J]. 复合材料学报, 2019, 36(7): 1776-1786. |
MA Z J, MANG C Y, WENG X Y, et al. Electromagnetic response behavior of Zn reduced graphene oxide(RGO)and ZnO/RGO self-assembled composites[J]. Acta Materiae Compositae Sinica, 2019, 36(7): 1776-1786 (in Chinese). | |
15 | XIANG J, LI J L, ZHANG X H, et al. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers[J]. Journal of Materials Chemistry A, 2014, 2(40): 16905-16914. |
16 | LIN Y, DAI J J, YANG H B, et al. Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties[J]. Chemical Engineering Journal, 2018, 334: 1740-1748. |
17 | ZHAO X X, HUANG Y, LIU X D, et al. Core-shell CoFe2O4@C nanoparticles coupled with rGO for strong wideband microwave absorption[J]. Journal of Colloid and Interface Science, 2022, 607: 192-202. |
18 | MAGISETTY R, RAJ A B, DATAR S, et al. Nanocomposite engineered carbon fabric-mat as a passive metamaterial for stealth application[J]. Journal of Alloys and Compounds, 2020, 848: 155771. |
19 | TAO J Q, ZHOU J T, YAO Z J, et al. Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties[J]. Carbon, 2021, 172: 542-555. |
20 | DI X C, WANG Y, LU Z, et al. Heterostructure design of Ni/C/porous carbon nanosheet composite for enhancing the electromagnetic wave absorption[J]. Carbon, 2021, 179: 566-578. |
21 | 王跃毅, 鄢定祥, 李忠明. 碳纳米管/聚酰亚胺泡沫的制备及其吸波性能[J]. 航空学报, 2022, 43(7): 425531. |
WANG Y Y, YAN D X, LI Z M. Preparation of carbon nanotubes/polyimide foam and its microwave absorption properties[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 425531 (in Chinese). | |
22 | CAO M S, SHU J C, WANG X X, et al. Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency[J]. Annalen der Physik, 2019, 531(4): 1800390. |
23 | ZHANG Y L, WANG X X, CAO M S. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption[J]. Nano Research, 2018, 11(3): 1426-1436. |
24 | LIU P B, GAO S, WANG Y, et al. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials[J]. Chemical Engineering Journal, 2020, 381: 122653. |
25 | 胡正浪, 吴海华, 杨增辉, 等. 石墨烯-铁镍合金-聚乳酸复合材料的制备及其吸波性能[J]. 复合材料学报, 2022, 39(7): 3303-3316. |
HU Z L, WU H H, YANG Z H, et al. Preparation of graphene-iron-nickel alloy-polylactic acid composites and their microwave absorption properties[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3303-3316 (in Chinese). | |
26 | ZHANG M, QIAN X, ZENG Q W, et al. Hollow microspheres of polypyrrole/magnetite/carbon nanotubes by spray-dry as an electromagnetic synergistic microwave absorber[J]. Carbon, 2021, 175: 499-508. |
27 | ZHANG Z W, CAI Z H, WANG Z Y, et al. A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials[J]. Nano-Micro Letters, 2021, 13(1): 1-29. |
28 | TANG M, ZHANG J Y, BI S, et al. Ultrathin topological insulator absorber: Unique dielectric behavior of Bi2Te3 nanosheets based on conducting surface states[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33285-33291. |
29 | SUN X, HE J P, LI G X, et al. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties[J]. Journal of Materials Chemistry C, 2013, 1(4): 765-777. |
30 | WU J M, YE Z M, LIU W X, et al. The effect of GO loading on electromagnetic wave absorption properties of Fe3O4/reduced graphene oxide hybrids[J]. Ceramics International, 2017, 43(16): 13146-13153. |
31 | LI X H, YI H B, ZHANG J W, et al. Fe3O4-graphene hybrids: nanoscale characterization and their enhanced electromagnetic wave absorption in gigahertz range[J]. Journal of Nanoparticle Research, 2013, 15(3): 1-11. |
32 | WANG Y P, PENG Z, JIANG W. Size-controllable synthesis of Fe3O4 nanospheres decorated graphene for electromagnetic wave absorber[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(6): 6010-6019. |
33 | LIU X D, HUANG Y, DING L, et al. Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption[J]. Journal of Materials Science & Technology, 2021, 72: 93-103. |
34 | YIN Y C, ZENG M, LIU J, et al. Enhanced high-frequency absorption of anisotropic Fe3O4/graphene nanocomposites[J]. Scientific Reports, 2016, 6(1): 1-10. |
35 | ZHENG J, LV H L, LIN X H, et al. Enhanced microwave electromagnetic properties of Fe3O4/graphene nanosheet composites[J]. Journal of Alloys and Compounds, 2014, 589: 174-181. |
36 | LIU X D, ZHAO X X, YAN J, et al. Enhanced electromagnetic wave absorption performance of core-shell Fe3O4@poly (3, 4-ethylenedioxythiophene) microspheres/reduced graphene oxide composite[J]. Carbon, 2021, 178: 273-284. |
37 | DING Y, ZHANG L, LIAO Q L, et al. Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings[J]. Nano Research, 2016, 9(7): 2018-2025. |
38 | ZHANG H X, JIA Z R, FENG A L, et al. In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber[J]. Composites Part B: Engineering, 2020, 199: 108261. |
39 | LIU X D, HUANG Y, YAN J, et al. Covalently bonded Fe3O4@SiO2-reduced graphene oxide nanocomposites as high-efficiency electromagnetic wave absorbers[J]. Ceramics International, 2020, 46: 5175-5184. |
40 | YANG C, DAI S L, ZHANG X Y, et al. Electromagnetic wave absorption property of graphene with Fe3O4 nanoparticles[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(2): 1483-1490. |
41 | SUN D P, ZOU Q, WANG Y P, et al. Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption[J]. Nanoscale, 2014, 6(12): 6557-6562. |
42 | 康越, 原博, 马天, 等. 基于石墨烯的电磁波损耗材料研究进展[J]. 无机材料学报, 2018, 33(12): 1259-1273. |
KANG Y, YUAN B, MA T, et al. Development of microwave absorbing materials based on graphene[J]. Journal of Inorganic Materials, 2018, 33(12): 1259-1273 (in Chinese). |
/
〈 |
|
〉 |