Fluid Mechanics and Flight Mechanics

Trapezoidal signal air supply method for air conditioning to remove bleed air pollutants

  • Lixiang ZHOU ,
  • Jiaquan LIN
Expand
  • School of Electronic Information and Automation,Civil Aviation University of China,Tianjin 300300,China
E-mail: jqlin@cauc.edu.cn

Received date: 2022-05-20

  Revised date: 2022-06-13

  Accepted date: 2022-07-22

  Online published: 2022-08-03

Supported by

Special Program for Civil Airplane of the Ministry of Industry and Information Technology(2020020306)

Abstract

To address the problem of poor removal effect of bleed air pollutants in the cabin with conventional constant signal supply, a Boeing737 cabin simulation model was established by the Computational Fluid Dynamics (CFD) technology, and the accuracy of the cabin simulation model verified by the Particle Image Velocimetry (PIV) experiment. The trapezoidal signal was used to supply air for cabin air conditioning in comparison with the constant signal. NO2 was selected as the bleed air pollutant. The flow field characteristics and pollutant dispersion law of ceiling air supply, sidewall air supply, and mixed air supply with the same ventilation volume and different signal air supplies were simulated. The optimal air supply condition of aircraft air conditioning was determined by combining the diluting flow rate index and draft rating index. The diluting flow rate index was used to evaluate the effect of pollutant removal in the cabin. The simulation results show that compared with the constant value signal air supply, the diluting flow rate of the cabin air conditioner with trapezoidal signal air supply is increased by 78.2% in the ceiling air supply mode, 34.3% in the side wall air supply mode, and 23.1% in the mixed air supply mode. Among them, the cabin air conditioner using the trapezoidal signal air supply displays the best pollution discharge effect in the ceiling air supply mode, and its draft rating index DR is less than 20%, meeting the thermal comfort requirements of passengers. Compared with the square wave signal air supply and sinusoidal signal air supply, the trapezoidal signal air supply has a better draft rating index than the square wave signal air supply, and a better pollution discharge effect than the sinusoidal signal air supply.

Cite this article

Lixiang ZHOU , Jiaquan LIN . Trapezoidal signal air supply method for air conditioning to remove bleed air pollutants[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(10) : 127472 -127472 . DOI: 10.7527/S1000-6893.2022.27472

References

1 王瑞宁, 黄成, 任洪娟, 等. 长三角地区民航飞机起飞着陆(LTO)循环大气污染物排放清单[J]. 环境科学学报201838(11): 4472-4479.
  WANG R N, HUANG C, REN H J, et al. Air pollutant emission inventory from LTO cycles of aircraft in civil aviation airports in the Yangtze River Delta Region, China[J]. Acta Scientiae Circumstantiae201838(11): 4472-4479 (in Chinese).
2 林家泉, 戴仕卿. 基于排污效率和吹风感指数的客舱空调最佳送风方式[J]. 航空学报202243(7): 125266-125266.
  LIN J Q, DAI S Q. Optimal air supply mode of aircraft cabin based on removal effectiveness and draft rating[J]. Acta Aeronauticaet Astronautica Sinica202243(7): 125266-125266 (in Chinese).
3 FAJERSZTAJN L, GUIMAR?ES M T, DUIM E, et al. Health effects of pollution on the residential population near a Brazilian Airport: A perspective based on literature review[J]. Journal of Transport & Health201914: 100565.
4 代炳荣, 刘义国, 余刚, 等. 飞机座舱空气质量数值模拟研究[J]. 交通运输工程学报201616(3): 108-115, 141.
  DAI B R, LIU Y G, YU G, et al. Numerical simulation research on air quality of aircraft cabin[J]. Journal of Traffic and Transportation Engineering201616(3): 108-115, 141 (in Chinese).
5 陈希远, 王振斌, 马博文, 等. 考虑污染物传播规律的飞机座舱送风方式研究[J]. 航空学报201839(7): 121994.
  CHEN X Y, WANG Z B, MA B W, et al. Study on air supply mode of aircraft cabin considering contaminant transmission laws[J]. Acta Aeronautica et Astronautica Sinica201839(7): 121994 (in Chinese).
6 杨建忠, 马博文, 陈希远, 等. 送风形式对飞机座舱引气污染物扩散影响[J]. 交通运输工程学报201919(1): 108-118.
  YANG J Z, MA B W, CHEN X Y, et al. Influence of air supply form on contaminat diffusion of bleed air in aircraft cabin[J]. Journal of Traffic and Transportation Engineering201919(1): 108-118 (in Chinese).
7 WANG A J, ZHANG Y H, TOPMILLER J, et al. Tracer study of airborne disease transmission in an aircraft cabin mock-up[J]. ASHRAE Transactions2006112(2): 697-705.
8 WANG A J, ZHANG Y H, SUN Y G, et al. Experimental study of ventilation effectiveness and air velocity distribution in an aircraft cabin mockup[J]. Building and Environment200843(3): 337-343.
9 林家泉, 孙凤山, 李亚冲. 客舱内呼吸道病原体传播机制与感染风险评估[J]. 中国安全科学学报202030(2): 146-151.
  LIN J Q, SUN F S, LI Y C. Transmission mechanism of respiratory pathogens in aircraft cabin and infection risk assessment[J]. China Safety Science Journal202030(2): 146-151 (in Chinese).
10 杨建忠, 邵资焱, 陈希远. 通风对飞机货舱烟雾探测影响研究[J]. 中国安全科学学报201929(2): 69-75.
  YANG J Z, SHAO Z Y, CHEN X Y. Research on influence of ventilation on detection of smoke in an aircraft cargo compartment[J]. China Safety Science Journal201929(2): 69-75 (in Chinese).
11 MESENH?LLER E, VENNEMANN P, HUSSONG J. Unsteady room ventilation—A review[J]. Building and Environment2020169: 106595.
12 WU C F, AHMED N A. A novel mode of air supply for aircraft cabin ventilation[J]. Building and Environment201256: 47-56.
13 林家泉, 李波, 邱岳恒. 基于空调正弦送风的清除客舱引气污染物方法[J]. 北京航空航天大学学报, doi: 10.13700/j.bh.1001-5965.2021.0422 .
  LIN J Q, LI B, QIU Y H. Removal cabin bleedingair system gaseous pollutants method based on air conditioning sinusoidal wind[J]. Journal of Beijing University of Aeronautics and Astronautics, doi: 10.13700/j.bh.1001-5965.2021.0422 (in Chinese).
14 LI F, LIU J J, REN J L, et al. Predicting contaminant dispersion using modified turbulent Schmidt numbers from different vortex structures[J]. Building and Environment2018130: 120-127.
15 LI M X, ZHAO B, TU J Y, et al. Study on the carbon dioxide lockup phenomenon in aircraft cabin by computational fluid dynamics[J]. Building Simulation20158(4): 431-441.
16 LI F, LIU J J, REN J L, et al. Numerical investigation of airborne contaminant transport under different vortex structures in the aircraft cabin[J]. International Journal of Heat and Mass Transfer201696: 287-295.
17 杨建忠, 裴春波, 陈希远. 送风方式对飞机座舱内污染物传播影响研究[J]. 应用力学学报202138(1): 241-248.
  YANG J Z, PEI C B, CHEN X Y. Study on the influence of air supply mode on contaminant transport in aircraft cabin[J]. Chinese Journal of Applied Mechanics202138(1): 241-248 (in Chinese).
18 YANG C W, LIU J W, HE F. Evolution of large-scale flow structures and traces of marked fluid particles within a single-aisle cabin mock-up[J]. Building Simulation201710(5): 723-736.
19 LIU C Q, WANG Y Q, YANG Y, et al. New omega vortex identification method[J]. Science China Physics, Mechanics & Astronomy, 201659(8): 684711.
20 谭洪卫, 季亮, KATO Shinsuke, 等. 非稳态风边界条件下的自然通风机理及效率[J]. 中南大学学报(自然科学版)201243(6): 2424-2433.
  TAN H W, JI L, SHINSUKE K, et al. Natural ventilation performance and mechanism on condition of fluctuating wind[J]. Journal of Central South University (Science and Technology)201243(6): 2424-2433 (in Chinese).
Outlines

/