ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Trailing edge deformation matrix aerodynamic design for long-range civil aircraft variable camber wing
Received date: 2022-04-28
Revised date: 2022-06-01
Accepted date: 2022-07-22
Online published: 2022-08-03
Supported by
National Level Project
Aerodynamic optimization research on the trailing edge deformation matrix is conducted for the long-range civil aircraft variable camber wing. Geometric parameterization of the deformation shape is determined in combination with the features of knuckle deformation structures,and the aerodynamic optimization design process of the trailing edge deformation matrix is established considering deformational coupling constraints on the basis of surrogate-based optimization algorithm. The deformation matrix for cruise flight profile characterized by lift step variations,and the deformation matrix for non-cruise flight profile composed of the buffeting point and drag divergence point are then obtained. The results show that:the drag reduction benefit of trailing edge deformation for cruise flight profile increased while the lift variation relative to the base point increased,and that the drag reduction quantity in a high lift state is about 7-8 times that in a low lift state. The key to trailing edge deformation drag reduction is to adjust the pressure distribution of the main wing. Since it is not sensitive to the deflection angle of deformation shape control sections,considering deformational coupling constraints has no remarkable impact on drag reduction benefit. Additionally,the step deformation matrix with the same deflection law of the trailing edge deformation shape,a linear corresponding relationship between the deflection angle and design lift,and obvious drag reduction benefit does exist. For the non-cruise flight profile deformation matrix,significant regularity is found from trailing edge deformation as that of cruise flight profile deformation matrix,and the trailing edge shape deformation can effectively reduce the shock wave intensity at the buffeting point,but not for the drag divergence point.
Chunpeng LI , Zhansen QIAN , Xiasheng SUN . Trailing edge deformation matrix aerodynamic design for long-range civil aircraft variable camber wing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(7) : 127335 -127335 . DOI: 10.7527/S1000-6893.2022.27335
1 | BOLONJIN A, GILUARD G B. Estimated benefits of variable geometry wing camber control for transport aircraft:NASA TM-1999-206586[R]. Washington,D.C.:NASA,1999. |
2 | GILYARD G B, GEORGIE J, BARNICKI J S. flight test of an adaptive configuration optimization system for transport aircraft:NASA TM-1999-206569[R]. Washington,D.C.:NASA,1999. |
3 | NORRIS G. 787 camber tests take off on 777[J]. Flight International, 2006(8): 13. |
4 | GILYARD G, ESPANA M. On the use of controls for subsonic transport performance improvement: Overview and future directions: NASA TM-4605[R]. Washington,D.C.: NASA,1994. |
5 | STRUBER H. The aerodynamic design of the A350 XWB-900 high lift system[C]∥29th Congress of the International Council of the Aeronautical Sciences,2014. |
6 | 梁煜,单肖文. 大型民机翼型变弯度气动特性分析与优化设计[J]. 航空学报,2016,37(3):790-798. |
LIANG Y, SHAN X W. Aerodynamic analysis and optimization design for variable camber airfoil of civil transport[J]. Acta Aeronautica et Astronautica Sinica,2016,37(3):790-798 (in Chinese) | |
7 | 沈广琛,白俊强,刘南,等. 新型机翼后缘变弯运动机构仿真及其气动影响研究[J]. 西北工业大学学报,2016,34(4):578-586. |
SHEN G C, BAI J Q, LIU N,et al. Mechanical simulation and aerodynamic analysis on a new type of wing trailing edge variable camber[J]. Journal of Northwestern Polytechnical University,2016,34(4):578-586 (in Chinese). | |
8 | 何萌,杨体浩,白俊强,等. 基于后缘襟翼偏转的大型客机变弯度技术减阻收益[J]. 航空学报,2020,41(7):123462. |
HE M, YANG T H, BAI J Q,et al. Drag reduction benefits of variable camber technology of airliner based on trailing-edge flap deflection[J]. Acta Aeronautica et Astronautica Sinica,2020,41(7):123462 (in Chinese). | |
9 | 夏慧,刘沛清,戴佳骅,等. 大型客机后缘铰链襟翼巡航变弯度气动性能数值研究[J]. 民用飞机设计与研究,2021(1):33-41. |
XIA H, LIU P Q, DAI J H,et al. Numerical study on aerodynamic performance of a large passenger aircraft with trailing edge hinge flap in cruise variable camber[J]. Civil Aircraft Design and Research,2021(1):33-41 (in Chinese). | |
10 | LYU Z J, MARTINS J R R A. Aerodynamic shape optimization of an adaptive morphing trailing-edge wing[J]. Journal of Aircraft,2015,52(6):1951-1970. |
11 | BURDETTE D A, KENWAY G K, LYU Z J,et al. Aerostructural design optimization of an adaptive morphing trailing edge wing[C]∥56th AIAA/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference. Reston: AIAA, 2015. |
12 | CHEN P C, ZHOU Z Q, GHOMAN S S,et al. Low-weight low-drag truss-braced wing design using variable camber continuous trailing edge flaps[C]∥56th AIAA/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference. Reston: AIAA, 2015. |
13 | TING E, CHAPARRO D, NGUYEN N,et al. Optimization of variable-camber continuous trailing-edge flap configuration for drag reduction[J]. Journal of Aircraft,2018,55(6):2217-2239. |
14 | BUI T T. Analysis of low-speed stall aerodynamics of a swept wing with seamless flaps[C]∥34th AIAA Applied Aerodynamics Conference. Reston: AIAA,2016. |
15 | BARTELS R E, STANFORD B, WAITE J. Performance enhancement of the flexible transonic truss-braced wing aircraft using variable-camber continuous trailing-edge flaps[C]∥AIAA Aviation 2019 Forum. Reston:AIAA, 2019. |
16 | 郭同彪,白俊强,杨体浩. 后缘连续变弯度对跨声速翼型气动特性的影响[J]. 航空学报,2016,37(2):513-521. |
GUO T B, BAI J Q, YANG T H. Influence of continuous trailing-edge variable camber on aerodynamic characteristics of transonic airfoils[J]. Acta Aeronautica et Astronautica Sinica,2016,37(2):513-521 (in Chinese). | |
17 | 聂瑞,裘进浩,季宏丽,等. 主动柔性后缘气动特性优化[J]. 工程热物理学报,2019,40(1):68-76. |
NIE R, QIU J H, JI H L,et al. Aerodynamic characteristics optimization of active compliant trailing edge[J]. Journal of Engineering Thermophysics,2019,40(1):68-76 (in Chinese). | |
18 | 梁海朝,曾进远,陈钱,等. 跨声速巡航态连续光滑偏转后缘翼型气动特性[J]. 航空科学技术,2021,32(5):7-16. |
LIANG H Z, ZENG J Y, CHEN Q,et al. Aerodynamic characteristics of morphing airfoils with continuous smooth trailing edges at transonic cruise condition[J]. Aeronautical Science & Technology,2021,32(5):7-16 (in Chinese). | |
19 | 王一凡,孙刚,张淼. 考虑转捩点约束的自然层流翼型变弯度设计[J]. 航空计算技术,2018,48(2):33-36,43. |
WANG Y F, SUN G, ZHANG M. Variable camber optimization design of a natural laminar airfoil[J]. Aeronautical Computing Technique,2018,48(2):33-36,43 (in Chinese). | |
20 | 李春鹏,张铁军,钱战森. 基于代理模型的自适应后缘翼型气动优化设计[J]. 航空科学技术,2019,30(11):41-47. |
LI C P, ZHANG T J, QIAN Z S. Aerodynamic optimization design of the airfoil with adaptive trailing edge based on surrogate model[J]. Aeronautical Science & Technology,2019,30(11):41-47 (in Chinese). | |
21 | 王斌,郝璇,郭少杰,等. 宽体客机巡航机翼变弯度减阻技术[J]. 空气动力学学报,2019,37(6):974-982. |
WANG B, HAO X, GUO S J,et al. Cruise drag reduction of variable camber wing of wide-body civil transport[J]. Acta Aerodynamica Sinica,2019,37(6):974-982 (in Chinese). | |
22 | 郭同彪,白俊强,李立,等. 民用客机变弯度机翼优化设计[J]. 中国科学:技术科学,2018,48(1):55-66. |
GUO T B, BAI J Q, LI L,et al. The morphing trailing-edge wing optimization design of the civil aircraft[J]. Scientia Sinica(Technologica),2018,48(1):55-66 (in Chinese). | |
23 | 雷锐午,白俊强,许丹阳,等. 考虑抖振特性的变弯度机翼设计研究[J]. 中国科学:技术科学,2020,50(2):161-174. |
LEI R W, BAI J Q, XU D Y,et al. Research on variable camber wing of civil aircraft considering buffeting characteristics[J]. Scientia Sinica(Technologica),2020,50(2):161-174 (in Chinese). | |
24 | PECORA R. Morphing wing flaps for large civil aircraft:Evolution of a smart technology across the Clean Sky program[J]. Chinese Journal of Aeronautics, 2021,34(7):13-28. |
25 | LEVY D W, LAFLIN K R, TINOCO E N,et al. Summary of data from the fifth computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft,2014,51(4):1194-1213. |
26 | 韩忠华,张瑜,许晨舟,等. 基于代理模型的大型民机机翼气动优化设计[J]. 航空学报,2019,40(1):522398. |
HAN Z H, ZHANG Y, XU C Z,et al. Aerodynamic optimization design of large civil aircraft wings using surrogate-based model[J]. Acta Aeronautica et Astronautica Sinica,2019,40(1):522398 (in Chinese). | |
27 | 韩忠华,许晨舟,乔建领,等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报,2020,41(5):623344. |
HAN Z H, XU C Z, QIAO J L,et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica,2020,41(5):623344 (in Chinese). |
/
〈 |
|
〉 |