This paper presents a highland atmospheric turbulence model for helicopter flight simulation. First, a spectrum model and statistical parameters of atmospheric turbulence velocity are provided considering the influence of highland topography, atmospheric stability, and mean wind speed profile. High-order shaping filters are developed by the least-square curve fitting method, and the zero-pole matching method is used to discretize the filters to form recursive algorithms for time-domain turbulence components. On this basis, spatially correlated atmospheric turbulence shaping filters are established by linear transformation with the Cholesky factorization of the covariance matrix. The "frozen field" hypothesis is used to expand the turbulence components along the direction of airspeed to form a three-dimensional atmospheric turbulence field covering all helicopter aerodynamic surfaces. Finally, the turbulence model is integrated into a helicopter flight dynamics model for flight simulation and validation against flight test data. The results show that the proposed turbulence model can accurately capture the influence of highland topography, atmospheric stability, and wind speed profile on the statistical characteristics of the atmospheric turbulence components. The integrated turbulence and flight dynamics model can accurately model the helicopter frequency response to atmospheric turbulence.
[1] 徐祥德,陈联寿.青藏高原大气科学试验研究进展[J].应用气象学报, 2006, 17(6):756-772. XU X D, CHEN L S. Advances of the study on Tibetan Plateau experiment of atmospheric sciences[J]. Journal of Applied Meteorological Science, 2006, 17(6):756-772(in Chinese).
[2] 李英,李跃清,赵兴炳.青藏高原东部与成都平原大气边界层对比分析Ⅰ——近地层微气象学特征[J].高原山地气象研究, 2008,28(1):32-37. LI Y, LI Y Q, ZHAO X B.The comparison and analysis of ABL observational data between the east of Tibetan Plateau and Chengdu (I)[J]. Plateau and Mountain Meteorology Research, 2008,28(1):32-37(in Chinese).
[3] 李英,李跃清,赵兴炳.青藏高原东部与成都平原大气边界层对比分析Ⅱ——近地层湍流特征[J].高原山地气象研究, 2008, 28(3):8-14. LI Y, LI Y Q, ZHAO X B.The comparison and analysis of ABL observational data between the east of Tibetan Plateau and Chengdu (II)-Characteristics of turbulence in the surface layer[J]. Plateau and Mountain Meteorology Research, 2008, 28(3):8-14(in Chinese).
[4] 肖业伦,金长江.大气扰动中的飞行原理[M].北京:国防工业出版社, 1993:166-173. XIAO Y L,JIN C J. Principles of flight in atmospheric disturbance[M]. Beijing:National Defense Industry Press, 1993:166-173(in Chinese).
[5] 洪冠新,肖业伦.用蒙特卡罗法仿真生成三维空间大气紊流场[J].航空学报, 2001, 22(6):542-545. HONG G X, XIAO Y L. Monte Carlo simulation for 3-d-field of atmospheric turbulence[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(6):542-545(in Chinese).
[6] GAO Z X, GU H B. Generation and application of spatial atmospheric turbulence field in flight simulation[J]. Chinese Journal of Aeronautics, 2009, 22(1):9-17.
[7] 高静,洪冠新,梁灶清. Von Karman模型三维大气紊流仿真理论与方法[J].北京航空航天大学学报, 2012, 38(6):736-740. GAO J, HONG G X, LIANG Z Q. Theory and method of numerical simulation for 3D atmospheric turbulence field based on Von Karman model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(6):736-740(in Chinese).
[8] GEORGE V V, GAONKAR G H, PRASAD J V R, et al. Adequacy of modeling turbulence and related effects on helicopter response[J]. AIAA Journal, 1992, 30(6):1468-1479.
[9] GAONKAR G H. Review of turbulence modeling and related applications to some problems of helicopter flight dynamics[J]. Journal of the American Helicopter Society, 2008, 53(1):87-107.
[10] JI H L, CHEN R L, LI P. Real-time simulation model for helicopter flight task analysis in turbulent atmospheric environment[J]. Aerospace Science and Technology, 2019, 92:289-299.
[11] MCFARLAND R E, DUISENBERG K. Simulation of rotor blade element turbulence:NASA TM-108862[R]. Washington, D.C.:NASA, 1995.
[12] 吉洪蕾,陈仁良,李攀.适用于直升机飞行力学分析的三维空间大气紊流模型[J].航空学报, 2014, 35(7):1825-1835. JI H L, CHEN R L, LI P. A model of three-dimensional-field atmospheric turbulence for helicopter flight dynamics analysis[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1825-1835(in Chinese).
[13] JI H L, CHEN R L, LI P. Distributed atmospheric turbulence model for helicopter flight simulation and handling-quality analysis[J]. Journal of Aircraft, 2016, 54(1):190-198.
[14] LUSARDI J A, TISCHLER M B, BLANKEN C L, et al. Empirically derived helicopter response model and control system requirements for flight in turbulence[J]. Journal of the American Helicopter Society, 2004, 49(3):340-349.
[15] SEHER-WEISS S, VON GRUENHAGEN W. Development of EC 135 turbulence models via system identification[J]. Aerospace Science and Technology, 2012, 23(1):43-52.
[16] CHALK.Military specification-flying qualities of piloted airplanes[S]. Washington, D.C.:United States Department of Defense, 1980.
[17] 沈宏彬,赵润华,张潇,等.西南地区低空风切变事件分析[J].高原山地气象研究, 2013, 33(3):37-42. SHEN H B, ZHAO R H, ZHANG X, et al. Analysis of low-level wind shear events in southwest China[J]. Plateau and Mountain Meteorology Research, 2013, 33(3):37-42(in Chinese).
[18] SMEDMAN-HÖGSTRÖM A S, HÖGSTRÖM U. A practical method for determining wind frequency distributions for the lowest 200 m from routine meteorological data[J]. Journal of Applied Meteorology, 1978, 17(7):942-954.
[19] 李正农,张梦宇,胡耀耀.典型风场的分形特征及分形模拟[J].地震工程与工程振动, 2019, 39(1):18-26. LI Z N, ZHANG M Y, HU Y Y. Fractal characterization and fractal simulation in different wind fields[J]. Earthquake Engineering and Engineering Dynamics, 2019, 39(1):18-26(in Chinese).
[20] ESDU 72026. Characteristics of the wind speed in the lower of the atmosphere near the ground:Strong winds (neutral atmosphere)[M]. London:Engineering Sciences Data Unit Ltd., 1972.
[21] JI H L, CHEN R L, LI P. Analysis of helicopter handling quality in turbulence with recursive von Kármán model[J]. Journal of Aircraft, 2017, 54(5):1631-1639.
[22] JI H L, CHEN R L, LI P. Reply by the authors to P.J.Sherman[J]. Journal of Aircraft, 2021, 58(2):408-412.
[23] ASCHER U M, GREIF C. A first course in numerical methods[M]. Philadelphia, PA:Society for Industrial and Applied Mathematics, 2011:104-107.
[24] 马续波,刘佳艺,徐佳意,等.相关变量随机数序列产生方法[J].物理学报, 2017, 66(16):160201. MA X B, LIU J Y, XU J Y, et al. Generation of correlated pseudorandom varibales[J]. Acta Physica Sinica, 2017, 66(16):160201(in Chinese).
[25] JI H L, CHEN R L, LI P. Rotor-state feedback control to alleviate pilot workload for helicopter shipboard operations[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(12):3088-3099.