Electronics and Electrical Engineering and Control

Method for cooperative navigation in constrained environment based on graph optimization

  • Haofei NIU ,
  • Qingzhong CAI ,
  • Jian LI ,
  • Gongliu YANG
Expand
  • School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing  100191,China

Received date: 2022-04-29

  Revised date: 2022-06-16

  Accepted date: 2022-07-15

  Online published: 2022-07-25

Supported by

National Natural Science Foundation of China(61803015)

Abstract

In recent years, the intelligent unmanned cluster system has attracted extensive attention. The cooperative navigation of multi-agent nodes in the cluster is a key problem to realize complex cooperative control. To overcome the possible problems of asynchronous and discontinuous measurement in the complex occlusion environment, a distributed collaborative navigation method is proposed based on graph optimization algorithm. The factor graph model is established based on the state constraints composed of the relative ranging information between nodes provided by (Ultra Wide Band, UWB) sensors and the dead reckoning information of nodes based on inertial sensors. The global optimization characteristics of graph optimization algorithm are used to solve the problem that the traditional filtering methods cannot adapt to non synchronization of measurement. Through the adaptive dynamic distributed topology, the measurement between nodes can be fully used to solve the problem of insufficient measurement of anchor points in the complex environment. Based on the real-time estimation of gyro bias, the individual vehicle’s ability to maintain measurement accuracy without external measurement in a short time is improved. The mathematical simulation and experimental results show that in the complex occlusion environment, the proposed method has the ability to process the measurement of dynamic addition and deletion and time asynchrony, and can estimate and compensate the gyro bias in real time. It can improve the positioning accuracy retention ability of a single node in the short-term communication rejection environment by 61%, and the comprehensive positioning accuracy of the cluster in the complex environment of limited communication is doubled.

Cite this article

Haofei NIU , Qingzhong CAI , Jian LI , Gongliu YANG . Method for cooperative navigation in constrained environment based on graph optimization[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(11) : 327342 -327342 . DOI: 10.7527/S1000-6893.2022.27342

References

1 叶结松, 龚柏春, 李爽, 等. 基于相对方位信息和单间距测量的多智能体编队协同控制[J]. 航空学报202142(7): 324610.
  YE J S, GONG B C, LI S, et al. Multi-agent formation cooperative control using relative bearing information and single-spacing measurement[J]. Acta Aeronautica et Astronautica Sinica202142(7): 324610 (in Chinese).
2 张普, 薛惠锋, 高山. 基于分布式自适应的多智能体容错一致性控制[J]. 航空学报202041(3): 323539.
  ZHANG P, XUE H F, GAO S. Distributed adaptive fault-tolerance consensus control for multi-agent system[J]. Acta Aeronautica et Astronautica Sinica202041(3): 323539 (in Chinese).
3 王巍, 邢朝洋, 冯文帅. 自主导航技术发展现状与趋势[J]. 航空学报202142(11): 525049.
  WANG W, XING C Y, FENG W S. State of the art and perspectives of autonomous navigation technology[J]. Acta Aeronautica et Astronautica Sinica202142(11): 525049 (in Chinese).
4 CUI Q M, ZHANG X F. Research analysis of wireless localization with insufficient resources for next-generation mobile communication networks[J]. International Journal of Communication Systems201326(9): 1206-1226.
5 许晓伟, 赖际舟, 吕品, 等. 多无人机协同导航技术研究现状及进展[J]. 导航定位与授时20174(4): 1-9.
  XU X W, LAI J Z, LV P, et al. A literature review on the research status and progress of cooperative navigation technology for multiple UAVs[J]. Navigation Positioning and Timing20174(4): 1-9 (in Chinese).
6 谢启龙, 宋龙, 鲁浩, 等. 协同导航技术研究综述[J]. 航空兵器201926(4): 23-30.
  XIE Q L, SONG L, LU H, et al. Review of collaborative navigation technology[J]. Aero Weaponry201926(4): 23-30 (in Chinese).
7 陈明星, 熊智, 刘建业, 等. 基于因子图的无人机集群分布式协同导航方法[J]. 中国惯性技术学报202028(4): 456-461.
  CHEN M X, XIONG Z, LIU J Y, et al. Distributed cooperative navigation method of UAV swarm based on factor graph[J]. Journal of Chinese Inertial Technology202028(4): 456-461 (in Chinese).
8 FAN S W, ZHANG Y, HAO Q, et al. Cooperative positioning for multi-AUVs based on factor graph and maximum correntropy[J]. IEEE Access20197: 153327-153337.
9 闫敬, 张立, 罗小元, 等. 异步时钟下基于信息物理融合的水下潜器协同定位算法[J]. 自动化学报201945(4): 739-748.
  YAN J, ZHANG L, LUO X Y, et al. Cyber-physical cooperative localization algorithms for underwater vehicle with asynchronous time clock[J]. Acta Automatica Sinica201945(4): 739-748 (in Chinese).
10 GUO K X, QIU Z R, MENG W, et al. Ultra-wideband based cooperative relative localization algorithm and experiments for multiple unmanned aerial vehicles in GPS denied environments[J]. International Journal of Micro Air Vehicles20179(3): 169-186.
11 GUO K X, LI X X, XIE L H. Ultra-wideband and odometry-based cooperative relative localization with application to multi-UAV formation control[J]. IEEE Transactions on Cybernetics202050(6): 2590-2603.
12 GUO K X, HAN D, XIE L H. Range-based cooperative localization with single landmark[C]∥2017 13th IEEE International Conference on Control & Automation (ICCA). Piscataway: IEEE Press, 2017: 588-593.
13 韩飞, 刘付成, 王兆龙, 等. 空间多机器人协同的多视线仅测角相对导航[J]. 航空学报202142(1): 524174.
  HAN F, LIU F C, WANG Z L, et al. Multiple line-of-sight angles-only relative navigation by multiple collaborative space robots[J]. Acta Aeronautica et Astronautica Sinica202142(1): 524174 (in Chinese).
14 罗子岩, 陈帅, 王国栋, 等. 多源融合导航系统的因子图算法综述[J]. 导航与控制202120(3): 9-16.
  LUO Z Y, CHEN S, WANG G D, et al. A survey of factor graph algorithms for multi-source fusion navigation system[J]. Navigation and Control202120(3): 9-16 (in Chinese).
15 DELLAERT F, KAESS M. Factor graphs for robot perception[M]. Hanover: Now Publishers, 2017
16 QIN T, LI P L, SHEN S J. VINS-mono: A robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics201834(4): 1004-1020.
17 CAMPOS C, ELVIRA R, RODRíGUEZ J J G, et al. ORB-SLAM3: An accurate open-source library for visual, visual-inertial, and multimap SLAM[J]. IEEE Transactions on Robotics202137(6): 1874-1890.
18 XU H, WANG L Q, ZHANG Y C, et al. Decentralized visual-inertial-UWB fusion for relative state estimation of aerial swarm[C]∥ 2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 8776-8782.
19 CAO Y J, BELTRAME G. VIR-SLAM: Visual, inertial, and ranging SLAM for single and multi-robot systems[J]. Autonomous Robots202145(6): 905-917.
20 SHEN H, ZONG Q, HANCHEN L U, et al. A distributed approach for lidar-based relative state estimation of multi-UAV in GPS-denied environments[J]. Chinese Journal of Aeronautics202235(1): 59-69.
21 SASKA M, BACA T, THOMAS J, et al. System for deployment of groups of unmanned micro aerial vehicles in GPS-denied environments using onboard visual relative localization[J]. Autonomous Robots201741(4): 919-944.
22 WALTER V, STAUB N, FRANCHI A, et al. UVDAR system for visual relative localization with application to leader-follower formations of multirotor UAVs[J]. IEEE Robotics and Automation Letters20194(3): 2637-2644.
23 SCHMUCK P, CHLI M. CCM-SLAM: Robust and efficient centralized collaborative monocular simultaneous localization and mapping for robotic teams[J]. Journal of Field Robotics201936(4): 763-781.
Outlines

/