Articles

Design and test of visual-inertial integrated method for landing guidance

  • Jing NI ,
  • Bo MA ,
  • Zhaoxu YANG ,
  • Chenggang TAO ,
  • Yan ZHOU ,
  • Yiwen HU
Expand
  • 1.AVIC Chengdu Aircraft Design & Research Institute,Chengdu 610091,China
    2.Aviation Key Laboratory of Fighter Integrated Simulation,Chengdu 610091,China
E-mail: njemail163@163.com

Received date: 2022-06-01

  Revised date: 2022-06-16

  Accepted date: 2022-07-08

  Online published: 2022-07-21

Supported by

Aeronautical Science Foundation of China(201905011004)

Abstract

To meet the requirement of UAV for visual-based landing guidance in complex environment, the limitations of visual positioning are analyzed through tests. A visual-inertial integrated method based on error state filtering is designed to solve the problem of high delay and misdetection outliers in visual landing guidance. Time synchronization method is used to compensate the delay of visual measurement results, and the detection of outliers is based on self-adaptive covariance of filter innovation. Finally, a flight test is carried out to collect and analyse the visual positioning and visual-inertial integrated data in landing process. The results show that the visual-inertial integrated method is stable and reliable,and that it can effectively improve the real-time performance and continuity of visual landing guidance.

Cite this article

Jing NI , Bo MA , Zhaoxu YANG , Chenggang TAO , Yan ZHOU , Yiwen HU . Design and test of visual-inertial integrated method for landing guidance[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(S1) : 727636 -727636 . DOI: 10.7527/S1000-6893.2022.27636

References

1 张琴. 基于序列图像的固定翼无人机着陆跑道识别与跟踪研究[D]. 南京: 南京航空航天大学, 2014.
  ZHANG Q. Runway recognition and tracking based on image sequence of fixed-wing UAV autonomous landing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese).
2 HECKER P, ANGERMANN M, BESTMANN U, et al. Optical aircraft positioning for monitoring of the integrated navigation system during landing approach[J]. Gyroscopy and Navigation201910(4): 216-230.
3 KRAMMER C, MISHRA C, HOLZAPFEL F. Testing and evaluation of a vision-augmented navigation system for automatic landings of general aviation aircraft: AIAA-2020-1083[R]. Orlando, FL: AIAA, 2020.
4 BELLAMY W. Airbus concludes ATTOL project that featured ‘world-first’ automated takeoffs and landings [EB/OL]. (2020-06-29) [2022-06-01]. .
5 张礼廉, 屈豪, 毛军, 等. 视觉/惯性组合导航技术发展综述[J]. 导航定位与授时20207(4): 50-63.
  ZHANG L L, QU H, MAO J, et al. A survey of intelligence science and technology integrated navigation technology[J]. Navigation Positioning and Timing20207(4): 50-63 (in Chinese).
6 MOURIKIS A I, ROUMELIOTIS S I. A multi-state constraint Kalman filter for vision-aided inertial navigation[C]∥Proceedings 2007 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2007: 3565-3572.
7 WEISS S, ACHTELIK M W, LYNEN S, et al. Real-time onboard visual-inertial state estimation and self-calibration of MAVs in unknown environments[C]∥ 2012 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2012: 957-964.
8 袁雷, 程岳, 牛文生, 等. 基于深度学习的跑道前视红外图像轮廓线提取[J]. 电讯技术201959(2): 179-184.
  YUAN L, CHENG Y, NIU W S, et al. Contour extraction of runway’s forward looking infra-red(FLIR) images based on deep learning[J]. Telecommunication Engineering201959(2): 179-184 (in Chinese).
9 尚克军, 郑辛, 王旒军, 等. 基于图像语义分割的无人机自主着陆导航方法[J]. 中国惯性技术学报202028(5): 586-594.
  SHANG K J, ZHENG X, WANG L J, et al. Image semantic segmentation-based navigation method for UAV auto-landing[J]. Journal of Chinese Inertial Technology202028(5): 586-594 (in Chinese).
10 WOLKOW S, SCHWITHAL A, TONH?USER C, et al. Image-aided position estimation based on line correspondences during automatic landing approach[C]∥ION 2015 Pacific PNT Meeting, 2015.
11 SOLà J. Quaternion kinematics for the error-state Kalman filter[DB/OL]. arXiv: ,2017.
12 WATANABE Y, MANECY A. Vision-integrated navigation system for aircraft final approach in case of GNSS/SBAS or ILS failures: AIAA-2019-0113[R]. Reston: AIAA, 2019.
13 茹江涛, 冷雪飞, 巩哲. INS/SAR组合导航量测信息不同步的滤波算法[J]. 南京航空航天大学学报201749(2): 276-282.
  RU J T, LENG X F, GONG Z. Filtering algorithm with asynchronous measurement information for INS/SAR integrated navigation system[J]. Journal of Nanjing University of Aeronautics & Astronautics201749(2): 276-282 (in Chinese).
14 张强, 孙红胜, 胡泽明. 目标跟踪中野值的判别与剔除方法[J]. 太赫兹科学与电子信息学报201412(2): 256-259.
  ZHANG Q, SUN H S, HU Z M. Method of distinguishing and rejecting outliers in target tracking[J]. Journal of Terahertz Science and Electronic Information Technology201412(2): 256-259 (in Chinese).
15 侯博文, 王炯琦, 周萱影, 等. 弹道跟踪数据野值剔除方法性能分析[J]. 上海航天201835(4): 91-100.
  HOU B W, WANG J Q, ZHOU X Y, et al. Analysis on performance of ballistic tracking data outlier elimination methods[J]. Aerospace Shanghai201835(4): 91-100 (in Chinese).
Outlines

/