ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Influence of structural repairs on crashworthiness of civil aircraft fuselage
Received date: 2022-05-24
Revised date: 2022-06-16
Accepted date: 2022-07-13
Online published: 2022-07-21
Supported by
National Level Project
To study the influence of structural repairs on the crashworthiness of civil aircraft fuselage, a typical damaged civil aircraft metal fuselage structure was taken as the research object in this paper. The fuselage crashworthiness after repair was analyzed through both drop test and simulation analysis. Furthermore, based on the verified simulation model, the effects of different repair positions and repair areas on the crashworthiness of fuselage structure were studied. The results show that the analysis results of the established crash dynamic model are in good agreement with the test results, and that the deformation modes are consistent. The peak crash load error is 2.4%; the maximum displacement error of the mark on the beam is 9.3%; the time error when the velocity of the mark on the beam drops to zero is 13.2%. Both the skin and frame repairs can influence the deformation mode of the structure. The symmetrical repairs on the skin and frame have significant influences on the load in the middle and late stages of the crash. Repairs on the skin have significant influences on the energy absorption of fuselage structure, while repairs on the frame have little effect on the energy absorption. Crashworthiness of the fuselage structure should be evaluated for the aircraft repaired in a large area.
Key words: civil aircraft; fuselage section; structure repair; crashworthiness; drop test
Xiaochuan LIU , Xinyue ZHANG , Xulong XI , Yabin YAN , Juntai MA . Influence of structural repairs on crashworthiness of civil aircraft fuselage[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(10) : 227517 -227517 . DOI: 10.7527/S1000-6893.2022.27517
1 | 张晓敏. 民机坠撞事故分析及典型吸能结构特性研究[D]. 天津: 中国民航大学, 2013. |
ZHANG X M. Civil aircraft crash accidents analysis and typical energy-absorbing structure characteristics research[D]. Tianjin: Civil Aviation University of China, 2013 (in Chinese). | |
2 | LIU X, GUO J, BAI C, et al. Drop test and crash simulation of a civil airplane fuselage section[J]. Chinese Journal of Aeronautics, 2015, 28(2): 447-456. |
3 | 范耀宇. 民用运输飞机适坠性要求浅析[J]. 民用飞机设计与研究, 2014(2): 31-33. |
FAN Y Y. Analysis of crash-worthiness requirements of civil transport aircraft[J]. Civil Aircraft Design & Research, 2014(2): 31-33 (in Chinese). | |
4 | 中国民用航空规章: 第25部-运输类飞机适航标准: CCAR-25-R4 [S]. 北京: 中国民用航空局, 2011. |
Civil Aviation Administration of China. China civil aviation regulation: 25-airworthiness standard of transport aircraft: CCAR-25-R4 [S]. Beijing: Civil Aviation Administration of China, 2011 (in Chinese). | |
5 | 刘小川, 白春玉, 惠旭龙, 等. 民机机身结构耐撞性研究的进展与挑战[J]. 固体力学学报, 2020, 41(4): 293-323. |
LIU X C, BAI C Y, XI X L, et al. Progress and challenge of research on crashworthiness of civil airplane fuselage structures[J]. Chinese Journal of Solid Mechanics, 2020, 41(4): 293-323 (in Chinese). | |
6 | 刘小川, 周苏枫, 马君峰, 等. 民机客舱下部吸能结构分析与试验相关性研究[J]. 航空学报, 2012, 33(12): 2202-2210. |
LIU X C, ZHOU S F, MA J F, et al. Correlation study of crash analysis and test of civil airplane sub-cabin energy absorption structure[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2202-2210 (in Chinese). | |
7 | 彭亮. 基于乘员生存性的机身结构适坠性设计与评价方法研究[D]. 西安: 西北工业大学, 2018. |
PENG L. Research on design and evaluation method of airframe structural crashworthiness based on occupants survivability[D]. Xi'an: Northwestern Polytechnical University, 2018 (in Chinese). | |
8 | ZHU X F, FENG Y W, XUE X F, et al. Evaluate the crashworthiness response of an aircraft fuselage section with luggage contained in the cargo hold[J]. International Journal of Crashworthiness, 2017, 22(4): 347-364. |
9 | JACKSON K E. Finite element simulations of two vertical drop tests of F-28 Fuselage sections: NASA/TM-2018-219807[R].Washington,D.C.:NASA, 2018. |
10 | 王跃全, 朱书华, 童明波, 等. 含货舱门的大型民机机身段垂直坠撞仿真分析[J]. 机械科学与技术, 2015, 34(6): 957-962. |
WANG Y Q, ZHU S H, TONG M B, et al. Simulation and analysis on vertical crash of civil aircraft fuselage section with cargo door[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(6): 957-962 (in Chinese). | |
11 | PERFETTO D, DE L A, LAMANNA G, et al. Drop test simulation and validation of a full composite fuselage section of a regional aircraft[J]. Procedia Structural Integrity, 2018, 12: 380-391. |
12 | 任毅如, 向锦武, 郑建强, 等. 典型民机机身段水上冲击数值模拟方法及其耐撞性研究[J]. 工程力学, 2016, 33(5): 241-248. |
REN Y R, XIANG J W, ZHENG J Q, et al. Research on the numerical method and crashworthiness of typical civil aircraft fuselage for water impact[J]. Engineering Mechanics, 2016, 33(5): 241-248 (in Chinese). | |
13 | HEIMBS S, HOFFMANN M, WAIMER M, et al. Dynamic testing and modelling of composite fuselage frames and fasteners for aircraft crash simulations[J]. International Journal of Crashworthiness, 2013, 18(4): 406-422. |
14 | LIU X, XI X, BAI C, et al. Dynamic response and failure mechanism of Ti-6AL-4V hi-lock bolts under combined tensile-shear loading[J]. International Journal of Impact Engineering, 2019, 131: 140-151. |
15 | 惠旭龙, 刘小川, 白春玉, 等. 复合材料结构用高锁螺栓的动态复合加载失效特性[J]. 兵工学报, 2019, 40(10): 2142-2150. |
XI X L, LIU X C, BAI C Y, et al. Failure characteristics of high-lock bolts for composite structures under dynamic combined loading[J]. Acta Armamentarii, 2019, 40(10): 2142-2150 (in Chinese). | |
16 | 汪存显, 高豪迈, 龚煦, 等. 航空铆钉连接件的抗冲击性能[J]. 航空学报, 2019, 40(1): 522484. |
WANG C X, GAO H M, GONG X, et al. Impact responses of aeronautic riveting structures[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522484 (in Chinese). | |
17 | REN Y R, XIANG J W. Improvement of aircraft crashworthy performance using inversion failure strut system[J]. Aircraft Engineering and Aerospace Technology, 2017, 89(2): 330-337. |
18 | PAZ J, DíAZ J, ROMERA L, et al. Optimisation of thin-walled hybrid vertical struts for crashworthy aircraft designs[J]. Structural and Multidisciplinary Optimization, 2020, 61(1): 141-158. |
19 | PAZ J, DIAZ J, ROMERA L, et al. Size and shape optimization of aluminum tubes with GFRP honeycomb reinforcements for crashworthy aircraft structures[J]. Composite Structures, 2015, 133: 499-507. |
20 | 冯振宇, 周坤, 宋山山, 等. 铺层角度对复合材料C型柱轴向压溃吸能特性影响分析[J]. 机械强度, 2019, 41(5): 1079-1084. |
FENG Z Y, ZHOU K, SONG S S, et al. Effect of ply orientation on energy-absorbing characteristics of composite c-channels subject to axial compression[J]. Journal of Mechanical Strength, 2019, 41(5): 1079-1084 (in Chinese). | |
21 | SUBBARAMAIAH R, PRUSTY B G, PEARCE G, et al. Crashworthy response of fibre metal laminate top hat structures[J]. Composite Structures, 2017, 160: 773-781. |
22 | JIANG H, REN Y, GAO B, et al. Research on the progressive damage model and trigger geometry of composite waved beam to improve crashworthiness[J]. Thin-Walled Structures, 2017, 119: 531-543. |
23 | 汪洋, 吴志斌, 刘富. 复合材料货舱地板立柱压溃响应试验[J]. 复合材料学报, 2020, 37(9): 2200-2206. |
WANG Y, WU Z B, LIU F. Crush experiment of composite cargo floor stanchions[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2200-2206 (in Chinese). | |
24 | 王远达, 梁永胜, 王宏伟. 飞机结构的耐久性与损伤容限设计[J]. 飞机设计, 2009, 29(1): 37-43. |
WANG Y D, LIANG Y S, WANG H W. Design of durability and damage tolerance for aircraft structure[J]. Aircraft Design, 2009, 29(1): 37-43 (in Chinese). | |
25 | 刘晓丽, 王瀛. 疲劳敏感结构修理损伤容限评估途径[J]. 航空维修与工程, 2016(1): 58-60. |
LIU X L, WANG Y. Discussion about methods of perform damage tolerance evaluation to the repair on FCBS[J]. Aviation Maintenance & Engineering, 2016(1): 58-60 (in Chinese). | |
26 | 刘小川, 王彬文, 白春玉, 等. 航空结构冲击动力学技术的发展与展望[J]. 航空科学技术, 2020, 31(3): 1-14. |
LIU X C, WANG B W, BAI C Y, et al. Progress and prospect of aviation structure impact dynamics[J]. Aeronautical Science & Technology, 2020, 31(3): 1-14 (in Chinese). | |
27 | 杨海滨. 民用飞机结构疲劳损伤维修决策与评估技术研究[D]. 南京: 南京航空航天大学, 2011. |
YANG H B. The research of maintenance decision and assessment method for aircraft structural fatigue damage[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese). | |
28 | 张欣玥, 惠旭龙, 刘小川, 等. 典型金属民机机身结构坠撞特性试验研究[J]. 航空学报, 2022,43(6):526234. |
ZHANG X Y, XI X L, LIU X C, et al. Experimental study on crash characteristics of typical metal civil aircraft fuselage structure[J]. Acta Aeronautica et Astronautica Sinica, 2022,43(6):526234 (in Chinese). | |
29 | 白春玉, 刘小川, 惠旭龙, 等. 民机适坠性研究中的垂向坠撞速度问题探讨[J]. 航空科学技术, 2020, 31(9): 11-17. |
BAI C Y, LIU X C, HUI X L, et al. Discussion on the problem of vertical crash velocity in the study of the crashworthiness of civil aircraft[J]. Aeronautical Science & Technology, 2020, 31(9): 11-17 (in Chinese). | |
30 | 飞机设计手册总编委会. 飞机设计手册 第3册, 材料[M]. 北京: 航空工业出版社, 2004: 186-260. |
General Editorial Board of Aircraft Design Manual. Aircraft design manual Volume 3: Materials [M]. Beijing: Aviation Industry Press, 2004: 186-260 (in Chinese). |
/
〈 |
|
〉 |