ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Advanced technology and development of high lift system for civil aircraft
Received date: 2022-05-14
Revised date: 2022-06-01
Accepted date: 2022-07-12
Online published: 2022-07-21
This paper analyzes thedevelopmentstatus, existing technical problems and key technology ofthe conventional aircrafthigh-lift-system, and deduces and predicts the development trend of the high lift system technology for the future and next generation aircraft,based on the research of the advanced technology adopted by the high-lift-system for the typical aircraft of the latest generation, and combining the green aviation concept and the TRIZ (Theory of Inventive Problem Solving) dynamic evolution innovation theory. In particular, we analyze it from different levels such as the aircraft level, the system level, the critical partsand materials. Our conclusionprovidestechnical support and reference for subsequent civil aircraft high lift systems.
Gaojie MA , Gang AN , Youmin SHI , Ning KANG , Junshuai SUN . Advanced technology and development of high lift system for civil aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(S1) : 727516 -727516 . DOI: 10.7527/S1000-6893.2022.27516
1 | 李挚. 绿色航空: 飞机系统的发展趋向探讨[J]. 黑龙江科技信息, 2013(11): 134. |
LI Z. Discussion on the development trend of green aviation-aircraft system[J]. Heilongjiang Science and TechnologyInformation, 2013(11): 134 (in Chinese). | |
2 | 孙侠生. 绿色航空技术研究与进展[M]. 北京: 航空工业出版社, 2020. |
SUN X S. Research and progress of green aviation technology[M]. Beijing: Aviation Industry Press, 2020 (inChinese). | |
3 | 林明, 蔡增杰, 朱武峰. 从绿色航空试论飞机系统的发展趋向和几点思考[J]. 液压气动与密封, 2012, 32(10): 1-5. |
LIN M, CAI Z J, ZHU W F. Discussion and considerations on the development trend of aircraft system from the green aviation[J]. Hydraulics Pneumatics & Seals, 2012, 32(10): 1-5 (in Chinese). | |
4 | 徐向荣, 孙军帅. 民用飞机高升力系统浅析[J]. 中国制造业信息化, 2011, 40(19): 61-63, 71. |
XU X R, SUN J S. Summary on the elevating system of civil aeroplane[J]. Manufacture Information Engineering of China, 2011, 40(19): 61-63, 71 (in Chinese). | |
5 | 刘沛清, 李玲. 大型飞机增升装置气动噪声研究进展[J]. 民用飞机设计与研究, 2019(1): 1-10. |
LIU P Q, LI L. Development of investigation on high-lift device noise for large aircrafts[J]. Civil Aircraft Design & Research, 2019(1): 1-10 (in Chinese). | |
6 | 李伟鹏. 大型客机增升装置噪声机理与噪声控制综述[J]. 空气动力学学报, 2018, 36(3): 372-384, 409. |
LI W P. Review of the mechanism and noise control of high-lift device noise[J]. Acta Aerodynamica Sinica, 2018, 36(3): 372-384, 409 (in Chinese). | |
7 | PENDLETONE, FLICKP, PAULD, etal. The X-53 A summary of the active aeroelastic wing flight research program[C]∥ 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
8 | Hall J M. Executive summary AFTI/F-111 mission adaptive wing: WRDC-TR-89-3083[R]. Wright-Patterson Air Force Base: Wright Research and Development Center, 1989. |
9 | 胡挺, 王晓春, 任盈盈. 空客A350和波音787的对比研究[J]. 企业技术开发, 2015, 34(35): 54-56. |
HU T, WANG X C, REN Y Y. Comparative study onairbus A350 and boeing 787[J]. Technological Development of Enterprise, 2015, 34(35): 54-56 (in Chinese). | |
10 | 马援. 强调性能优势旨在后来居上空客精心设计A350XWB[J]. 国际航空, 2007(8): 15-17. |
MA Y. Some design details of A350XWB[J]. International Aviation, 2007(8): 15-17 (in Chinese). | |
11 | 李丽雅. 大型飞机增升装置技术发展综述[J]. 航空科学技术, 2015, 26(5): 1-10. |
LI L Y. Review of high-lift device technology development on large aircrafts[J]. Aeronautical Science & Technology, 2015, 26(5): 1-10 (in Chinese). | |
12 | 夏盛来, 何景武. TRIZ理论在飞机结构设计中的应用研究[J]. 机械设计与制造, 2008(12): 57-59. |
XIA S L, HE J W. Applying research of TRIZ theory in airplane structural design[J]. Machinery Design & Manufacture, 2008(12): 57-59 (in Chinese). | |
13 | 檀润华. 创新设计: TRIZ: 发明问题解决理论[M]. 北京: 机械工业出版社, 2002: 1-2. |
TAN R H. Innovative design: TRIZ: Theory of inventing problem solving[M]. Beijing: China Machine Press, 2002: 1-2 (in Chinese). | |
14 | 石鹏飞, 谭智勇, 陈洁. 先进民机飞控系统发展的需求与设计考虑[J]. 中国科学: 技术科学, 2018, 48(3): 237-247. |
SHI P F, TAN Z Y, CHEN J. The development requirement and design considerations for advanced civil aircraft flight control system[J]. Scientia Sinica (Technologica), 2018, 48(3): 237-247 (in Chinese). | |
15 | CIOBACA V, WILD J. An overview of recent DLR contributions on active flow—Separation control studies for high-lift configurations[J]. Journal Aerospace Lab, 2013(6): 1-11. |
16 | 景博, 黄以锋, 张建业. 航空电子系统故障预测与健康管理技术现状与发展[J]. 空军工程大学学报(自然科学版), 2010, 11(6): 1-6. |
JING B, HUANG Y F, ZHANG J Y. Status and perspectives of prognostics and health management technology of avionics system[J]. Journal of Air Force Engineering University (Natural Science Edition), 2010, 11(6): 1-6 (in Chinese). | |
17 | REEDE, SCHUMANN J, MENGSHOELO. Verification and validation of system health management models using parametric testing: AIAA 2011-1445[R]. Reston: AIAA, 2011. |
18 | BIEDERMANN O, GEERLING G. Power control units with secondary controlled hydraulic motors—A new concept for application in aircraft high lift systems[C]∥ Recent Advances in Aerospce Hydraulics. 1998: 24-25. |
19 | LAMMERING T, SAUTERLEUTE A, HAUBER B, et al. Conceptual design of a battery-powered high lift system for single-aisle aircraft[C]∥ 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014. |
20 | 倪迎鸽, 杨宇. 自适应机翼翼型变形的研究现状及关键技术[J]. 航空工程进展, 2018, 9(3): 297-308. |
NI Y G, YANG Y. Research on the status and key technology in morphing airfoil of adaptive wings[J]. Advances in Aeronautical Science and Engineering, 2018, 9(3): 297-308 (in Chinese). | |
21 | VASISTA S, TONG L Y, WONGK C. Realization of morphing wings: amultidisciplinary challenge[J]. Journal of Aircraft, 2012, 49(1): 11-28. |
22 | SATTI R, LI Y B, SHOCK R, et al. Computational aeroacoustic analysis of a high-lift configuration[C]∥ 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
23 | KOTA S, HETRICK J A, OSBORN R, et al. Design and application of compliant mechanisms for morphing aircraft structures[C]∥ Smart Structures and Materials 2003: Industrial and Commercial Applications of Smart Structures Technologies. SanDiego: SPIE, 2003: 24-33. |
24 | MONNER H P. Realization of an optimized wing camber by using formvariable flap structures[J]. Aerospace Science and Technology, 2001, 5(7): 445-455. |
25 | 黄建. 新型零泊松比蜂窝结构力学性能及其变弯度机翼应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
HUANG J. Mechanical performances of Anovel honeycomb design with zero Poisson’s ratio anditsapplicationincamber morphing wings[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese). | |
26 | DEGASPARIA, RICCOBENEL, RICCIS. Design, manufacturing and wind tunnel validation of a morphing compliant wing[J]. Journal of Aircraft, 2018, 55(6): 2313-2326. |
27 | ARENA M, CONCILIOA, PECORAR. Aero-servo-elastic design of a morphing wing trailing edge system for enhanced cruise performance[J]. Aerospace Science and Technology, 2019, 86: 215-235. |
28 | 白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报, 2019, 37(3): 426-443. |
BAI P, CHEN Q, XU G W, et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(3): 426-443 (in Chinese). | |
29 | 许云涛. 智能变形飞行器发展及关键技术研究[J]. 战术导弹技术, 2017(2): 26-33, 46. |
XU Y T. Research on the development and key technology of smart morphing aircraft[J]. Tactical Missile Technology, 2017(2): 26-33, 46 (in Chinese). | |
30 | 赵稼祥. 民用航空和先进复合材料[J]. 高科技纤维与应用, 2007, 32(2): 6-10. |
ZHAO J X. Civil aviation and advanced composite materials[J]. Hi-Tech Fiber & Application, 2007, 32(2): 6-10 (in Chinese). | |
31 | 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2): 317-322. |
MA L M, ZHANG J Z, YUE G Q, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 317-322 (in Chinese). | |
32 | 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1): 1-10. |
DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1): 1-10 (in Chinese). |
/
〈 |
|
〉 |