Material Engineering and Mechanical Manufacturing

Research progress of rotorcraft UAV interactive manipulation dynamic modeling

  • DING Xilun ,
  • JIN Xueying
Expand
  • Robotics Institute, Beihang University, Beijing 100191, China

Received date: 2022-05-07

  Revised date: 2022-06-09

  Online published: 2022-07-21

Supported by

National Natural Science Foundation of China (91748201; T2121003; 62073002)

Abstract

In recent years, manipulating rotorcraft UAVs have received widespread attention in academic, industrial and commercial fields, and have a wide range of applications because of its ability to combine the flexibility and maneuverability of rotorcraft UAVs with the operational capability of manipulators. The dynamics of the interaction between manipulating rotorcraft UAVs and environment is very complex, and the ability to accurately model the dynamics of the entire process of interaction with the environment is a critical factor affecting its performance. This paper firstly extends the dynamics modeling technology of manipulating rotorcraft UAV from flight mode to interactive manipulation mode and focuses on the latter; then classifies the interactive manipulation mode by different applications, and for the first time classifies the interactive task mode of manipulating rotorcraft UAV in detail according to the concept of constraints in multi-body system dynamics. The dynamics modeling methods are then investigated and analyzed, and the generalized dynamics modeling methods for each interactive manipulation mode are given, and the current status of domestic and international research is introduced. Finally, the challenges in this field are clarified and the future development trends are introduced.

Cite this article

DING Xilun , JIN Xueying . Research progress of rotorcraft UAV interactive manipulation dynamic modeling[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(10) : 527388 -527388 . DOI: 10.7527/S1000-6893.2022.27388

References

[1] IDRISSI M, SALAMI M, ANNAZ F. A review of quadrotor unmanned aerial vehicles:applications, architectural design and control algorithms[J]. Journal of Intelligent & Robotic Systems, 2022, 104(2):22.
[2] DING X L, GUO P, XU K, et al. A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems[J]. Chinese Journal of Aeronautics, 2019, 32(1):200-214.
[3] LEE K, CHOI Y, PARK J. Backstepping based formation control of quadrotors with the state transformation technique[J]. Applied Sciences, 2017, 7(11):1170.
[4] 杨斌, 何玉庆, 韩建达, 等. 作业型飞行机器人研究现状与展望[J]. 机器人, 2015, 37(5):628-640. YANG B, HE Y Q, HAN J D, et al. Survey on aerial manipulator systems[J]. Robot, 2015, 37(5):628-640 (in Chinese).
[5] DING X L, WANG X Q, YU Y S, et al. Dynamics modeling and trajectory tracking control of a quadrotor unmanned aerial vehicle[J]. Journal of Dynamic Systems, Measurement, and Control, 2017, 139(2):021004.
[6] 全权. 多旋翼飞行器设计与控制[M]. 北京:电子工业出版社, 2018:108-114. QUAN Q. Multi-rotor design and control[M]. Beijing:Publishing House of Electronics Industry, 2018:108-114 (in Chinese).
[7] 查长流. 微小型飞行机器人组合导航与控制技术研究[D]. 北京:北京航空航天大学, 2016:10-31. ZHA C L. Integrated navigation and control of a micro and small flying robot[D]. Beijing:Beihang University, 2016:10-31 (in Chinese).
[8] YIU Y K, CHENG H, XIONG Z H, et al. On the dynamics of parallel manipulators[C]//Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164). Piscataway:IEEE Press, 2001:3766-3771.
[9] YU Y S, DING X L. A quadrotor test bench for six degree of freedom flight[J]. Journal of Intelligent & Robotic Systems, 2012, 68(3):323-338.
[10] 俞玉树. 多旋翼多功能空中机器人系统动力学与控制问题研究[D]. 北京:北京航空航天大学, 2013:57-70. YU Y S. Research on dynamics and control of multi-rotor multi-function aerial robot system[D]. Beijing:Beihang University, 2013:57-70 (in Chinese).
[11] 王检耀. 三维接触碰撞动力学的多变量方法及接触模型研究[D]. 上海:上海交通大学, 2014:1-13. WANG J Y. Multi-variable method for three dimensional contact/impact dynamics and research on contact model[D]. Shanghai:Shanghai Jiao Tong University, 2014:1-13 (in Chinese).
[12] PAMADI B N, NEIRYNCK T A, HOTCHKO N J, et al. Simulation and analyses of stage separation of two-stage reusable launch vehicles[J]. Journal of Spacecraft and Rockets, 2007, 44(1):66-80.
[13] PAMADI B N, TAYLOR L W, PRICE D B. Adaptive guidance for an aero-assisted boost vehicle[J]. Journal of Guidance, Control, and Dynamics, 1990, 13(4):586-595.
[14] ZHAO M J, SHI F, ANZAI T, et al. Online motion planning for deforming maneuvering and manipulation by multilinked aerial robot based on differential kinematics[J]. IEEE Robotics and Automation Letters, 2020, 5(2):1602-1609.
[15] JIMENEZ-CANO A E, MARTIN J, HEREDIA G, et al. Control of an aerial robot with multi-link arm for assembly tasks[C]//2013 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2013:4916-4921.
[16] LIPPIELLO V, RUGGIERO F. Exploiting redundancy in Cartesian impedance control of UAVs equipped with a robotic arm[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2012:3768-3773.
[17] TRUJILLO M Á, MARTíNEZ-DE DIOS J R, MARTíN C, et al. Novel aerial manipulator for accurate and robust industrial NDT contact inspection:a new tool for the oil and gas inspection industry[J]. Sensors (Basel, Switzerland), 2019, 19(6):1305.
[18] TOGNON M, CHÁVEZ H A T, GASPARIN E, et al. A truly-redundant aerial manipulator system with application to push-and-slide inspection in industrial plants[J]. IEEE Robotics and Automation Letters, 2019, 4(2):1846-1851.
[19] SUAREZ A, HEREDIA G, OLLERO A. Design of an anthropomorphic, compliant, and lightweight dual arm for aerial manipulation[J]. IEEE Access, 6:29173-29189.
[20] SEO H, KIM S, KIM H J. Aerial grasping of cylindrical object using visual servoing based on stochastic model predictive control[C]//2017 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2017:6362-6368.
[21] ORSAG M, KORPELA C, BOGDAN S, et al. Valve turning using a dual-arm aerial manipulator[C]//2014 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway:IEEE Press, 2014:836-841.
[22] STEICH K, KAMEL M, BEARDSLEY P, et al. Tree cavity inspection using aerial robots[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway:IEEE Press, 2016:4856-4862.
[23] CHERMPRAYONG P, ZHANG K T, XIAO F, et al. An integrated delta manipulator for aerial repair:a new aerial robotic system[J]. IEEE Robotics & Automation Magazine, 2019, 26(1):54-66.
[24] YVKSEL B, SECCHI C, BVLTHOFF H H, et al. Aerial physical interaction via IDA-PBC[J]. The International Journal of Robotics Research, 2019, 38(4):403-421.
[25] WOPEREIS H W, HOEKSTRA J J, POST T H, et al. Application of substantial and sustained force to vertical surfaces using a quadrotor[C]//2017 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2017:2704-2709.
[26] POUNDS P E I, BERSAK D R, DOLLAR A M. Grasping from the air:hovering capture and load stability[C]//2011 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2011:2491-2498.
[27] PAUL H, MIYAZAKI R, LADIG R, et al. Landing of a multirotor aerial vehicle on an uneven surface using multiple on-board manipulators[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway:IEEE Press, 2019:1926-1933.
[28] SUAREZ A, JIMENEZ-CANO A E, VEGA V M, et al. Design of a lightweight dual arm system for aerial manipulation[J]. Mechatronics, 2018, 50:30-44.
[29] HAMAZA S, GEORGILAS I, FERNANDEZ M, et al. Sensor installation and retrieval operations using an unmanned aerial manipulator[J]. IEEE Robotics and Automation Letters, 2019, 4(3):2793-2800.
[30] BARTELDS T, CAPRA A, HAMAZA S, et al. Compliant aerial manipulators:toward a new generation of aerial robotic workers[J]. IEEE Robotics and Automation Letters, 2016, 1(1):477-483.
[31] 王照瑞, 曹义华. 吊挂物为刚体模型的直升机外吊挂飞行平衡与稳定性分析[J]. 南京航空航天大学学报, 2015, 47(2):296-303. WANG Z R, CAO Y H. Equilibrium characteristics and stability analysis of helicopter with rigid-body modeling slung-load[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2):296-303 (in Chinese).
[32] MENG X D, HE Y Q, HAN J D. Survey on aerial manipulator:system, modeling, and control[J]. Robotica, 2020, 38(7):1288-1317.
[33] 王学强. 多旋翼空中操作机器人航迹跟踪与自主飞行控制研究[D]. 北京:北京航空航天大学, 2017:101-108. WANG X Q. Trajectory tracking and autonomous flight control of a multi-rotor aerial manipulation robot[D]. Beijing:Beihang University, 2017:101-108 (in Chinese).
[34] 贾庆轩, 符颖卓, 陈钢, 等. 基于状态观测器的空间机械臂关节故障诊断[J]. 航空学报, 2021, 42(1):523728. JIA Q X, FU Y Z, CHEN G, et al. State observer based joint failure diagnosis of space manipulators[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1):523728 (in Chinese).
[35] WU S, MOU F L, LIU Q, et al. Contact dynamics and control of a space robot capturing a tumbling object[J]. Acta Astronautica, 2018, 151:532-542.
[36] 王检耀, 刘铸永, 洪嘉振. 基于交互模式的柔性体接触碰撞动力学建模方法[J]. 物理学报, 2017, 66(15):154501. WANG J Y, LIU Z Y, HONG J Z. Dynamic modeling method of flexible bodies with contact/impact based on interactive mode[J]. Acta Physica Sinica, 2017, 66(15):154501 (in Chinese).
[37] FLORES P, MACHADO M, SILVA M T, et al. On the continuous contact force models for soft materials in multibody dynamics[J]. Multibody System Dynamics, 2011, 25(3):357-375.
[38] 韩石磊, 洪嘉振. 柔性多体碰撞问题的多变量方法[J]. 力学学报, 2011, 43(5):886-893. HAN S L, HONG J Z. Multi-variable method for flexible multi-body systems with contact/impact[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5):886-893 (in Chinese).
[39] 段玥晨,章定国,洪嘉振.作大范围运动柔性梁的一种碰撞动力学求解方法[J]. 机械工程学报, 2012, 48(19):95-102. DUAN Y C, ZHANG D G, HONG J Z. Method for solving the impact problem of a flexible beam with large overall motion[J]. Journal of Mechanical Engineering, 2012, 48(19):95-102 (in Chinese).
[40] BODIE K, TAYLOR Z, KAMEL M, et al. Towards efficient full pose omnidirectionality with overactuated mavs[C]//International Symposium on Experimental Robotics, 2018.
[41] BODIE K R, BRUNNER M, PANTIC M, et al. An omnidirectional aerial manipulation platform for contact-based inspection[C]//Robotics:Science and Systems XV. Robotics:Science and Systems Foundation, 2019.
[42] RUGGIERO F, CACACE J, SADEGHIAN H, et al. Impedance control of VToL UAVs with a momentum-based external generalized forces estimator[C]//2014 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2014:2093-2099.
[43] ALEXIS K, DARIVIANAKIS G, BURRI M, et al. Aerial robotic contact-based inspection:planning and control[J]. Autonomous Robots, 2016, 40(4):631-655.
[44] ALEXIS K, PAPACHRISTOS C, SIEGWART R, et al. Robust model predictive flight control of unmanned rotorcrafts[J]. Journal of Intelligent & Robotic Systems, 2016, 81(3):443-469.
[45] DING X L, YU Y S, ZHU J J. Trajectory linearization tracking control for dynamics of a multi-propeller and multifunction aerial robot-MMAR[C]//2011 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2011:757-762.
[46] DING X L, YU Y S. Dynamic analysis, optimal planning and composite control for aerial arm-operating with a multi-propeller multifunction aerial robot[C]//2012 IEEE International Conference on Mechatronics and Automation. Piscataway:IEEE Press, 2012:420-427.
[47] MEBARKI R, LIPPIELLO V, SICILIANO B. Image-based control for dynamically cross-coupled aerial manipulation[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2014:4827-4833.
[48] LEE D J, HA C S. Mechanics and control of quadrotors for tool operation[C]//Volume 1:Adaptive Control; Advanced Vehicle Propulsion Systems; Aerospace Systems; Autonomous Systems; Battery Modeling; Biochemical Systems; Control Over Networks; Control Systems Design; Cooperative. ASME, 2012:177-184.
[49] YANG H, LEE D J. Dynamics and control of quadrotor with robotic manipulator[C]//2014 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2014:5544-5549.
[50] YU Y S, DING X L. Safe landing analysis of a quadrotor aircraft with two legs[J]. Journal of Intelligent & Robotic Systems, 2014, 76(3):527-537.
[51] ALEXIS K, HUERZELER C, SIEGWART R. Hybrid modeling and control of a coaxial unmanned rotorcraft interacting with its environment through contact[C]//2013 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2013:5417-5424.
[52] DARIVIANAKIS G, ALEXIS K, BURRI M, et al. Hybrid predictive control for aerial robotic physical interaction towards inspection operations[C]//2014 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2014:53-58.
[53] FUMAGALLI M, NALDI R, MACCHELLI A, et al. Developing an aerial manipulator prototype:physical interaction with the environment[J]. IEEE Robotics & Automation Magazine, 2014, 21(3):41-50.
[54] FUMAGALLI M, CARLONI R. A modified impedance control for physical interaction of UAVs[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2013:1979-1984.
[55] SCHOLTEN J L J, FUMAGALLI M, STRAMIGIOLI S, et al. Interaction control of an UAV endowed with a manipulator[C]//2013 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2013:4910-4915.
[56] YVKSEL B, MAHBOUBI S, SECCHI C, et al. Design, identification and experimental testing of a light-weight flexible-joint arm for aerial physical interaction[C]//2015 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2015:870-876.
[57] YVKSEL B, SECCHI C, BVLTHOFF H H, et al. Reshaping the physical properties of a quadrotor through IDA-PBC and its application to aerial physical interaction[C]//2014 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2014:6258-6265.
[58] YVKSEL B, SECCHI C, BüLTHOFF H H, et al. A nonlinear force observer for quadrotors and application to physical interactive tasks[C]//2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway:IEEE Press, 2014:433-440.
[59] KIM S, SEO H, KIM H J. Operating an unknown drawer using an aerial manipulator[C]//2015 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2015:5503-5508.
[60] MENG X, XU K, GUO P, et al. A passive connection mechanism for on-orbit assembly of large-scale antenna structure[C]//2018 IEEE International Conference on Robotics and Biomimetics. Piscataway:IEEE Press, 2018:2141-2146.
[61] BERNARD M, KONDAK K, MAZA I, et al. Autonomous transportation and deployment with aerial robots for search and rescue missions[J]. Journal of Field Robotics, 2011, 28(6):914-931.
[62] 祝智强. 无人直升机机载灭火装置的研究与设计[D]. 长春:吉林大学, 2020:1-15. ZHU Z Q. Research and design of fire extinguishing device based on unmanned helicopter[D]. Changchun:Jilin University, 2020:1-15 (in Chinese).
[63] 毕梦月. 直升机/吊挂物耦合系统的操稳特性分析及控制方法研究[D]. 南京:南京航空航天大学, 2018:1-18. BI M Y. Research on controllability/stability analysis and control method for helicopter-slung load coupling system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018:1-18 (in Chinese).
[64] 焦海林. 四旋翼无人机吊挂飞行控制研究[D]. 绵阳:西南科技大学, 2021:8-16. JIAO H L. Flight control of quadrotor UAV with suspended load[D]. Mianyang:Southwest University of Science and Technology, 2021:8-16. (in Chinese)
[65] JIANG Q M, KUMAR V. Determination and stability analysis of equilibrium configurations of objects suspended from multiple aerial robots[J]. Journal of Mechanisms and Robotics, 2012, 4(2):021005.
[66] SREENATH K, MICHAEL N, KUMAR V. Trajectory generation and control of a quadrotor with a cable-suspended load-A differentially-flat hybrid system[C]//2013 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2013:4888-4895.
[67] GOODARZI F A, LEE T. Dynamics and control of quadrotor UAVs transporting a rigid body connected via flexible cables[C]//2015 American Control Conference (ACC). Piscataway:IEEE Press, 2015:4677-4682.
[68] GOODARZI F A, LEE T. Stabilization of a rigid body payload with multiple cooperative quadrotors[J]. Journal of Dynamic Systems, Measurement, and Control, 2016, 138(12):121001.
[69] 万绍峰, 曹义华, 黄磊. 基于Kane方法的直升机-柔性绳索-吊挂系统动力学建模[J]. 航空动力学报, 2016, 31(4):934-940. WAN S F, CAO Y H, HUANG L. Dynamic modeling of helicopter-flexible rope-slung load system based on Kane's method[J]. Journal of Aerospace Power, 2016, 31(4):934-940 (in Chinese).
[70] LALIBERTÉ F, SAUSSIÉ D. Robust control of a tandem helicopter with variable payload[J]. IFAC-PapersOnLine, 2017, 50(1):15952-15958.
[71] FOEHN P, FALANGA D, KUPPUSWAMY N, et al. Fast trajectory optimization for agile quadrotor maneuvers with a cable-suspended payload[C]//Robotics:Science and Systems XIII. Robotics:Science and Systems Foundation, 2017.
[72] LIANG X, LIN H, FANG Y C, et al. Dynamics modeling and analysis for unmanned quadrotor transportation systems with double-pendulum swing effects[C]//2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics. Piscataway:IEEE Press, 2019:628-633.
[73] 崔瑛. 直升机吊挂飞行稳定性分析[D]. 南京:南京航空航天大学, 2005:1-8. CUI Y. Stability analysis of a helicopter with an external slung load[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2005:1-8 (in Chinese).
[74] 王刚. 一种螺旋桨动力配平的小型电动无尾无人机研究[D]. 西安:西北工业大学, 2016:1-5. WANG G. A research on a small electric-powered tailless UAV using propeller thrust trimming[D]. Xi'an:Northwestern Polytechnical University, 2016:1-5 (in Chinese).
[75] 吴鹏, 马成江, 朱国民. 直升机吊挂飞行动力学建模与分析[J]. 直升机技术, 2010(4):33-36. WU P, MA C J, ZHU G M. Flight dynamics modeling and handling quality analysis of helicopter with slung-load[J]. Helicopter Technique, 2010(4):33-36 (in Chinese).
[76] 齐万涛, 陈仁良. 直升机吊挂飞行稳定性和操纵性分析[J]. 南京航空航天大学学报, 2011, 43(3):406-412. QI W T, CHEN R L. Stability and control characteristic analysis for flight of helicopter with slung-load[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(3):406-412 (in Chinese).
[77] DALER L, KLAPTOCZ A, BRIOD A, et al. A perching mechanism for flying robots using a fibre-based adhesive[C]//2013 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2013:4433-4438.
[78] KOVAČ M, GERMANN J, HVRZELER C, et al. A perching mechanism for micro aerial vehicles[J]. Journal of Micro-Nano Mechatronics, 2009, 5(3):77-91.
[79] SHIMAHARA S, LADIG R, SUPHACHART L, et al. Aerial manipulation for the workspace above the airframe[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York:ACM, 2015:1453-1458.
[80] KUTIA J R, STOL K A, XU W L. Canopy sampling using an aerial manipulator:a preliminary study[C]//2015 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway:IEEE Press, 2015:477-484.
[81] KUTIA J R, STOL K A, XU W L. Initial flight experiments of a canopy sampling aerial manipulator[C]//2016 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway:IEEE Press, 2016:1359-1365.
[82] WITTENBURG J. Dynamics of multibody systems (Second Edition)[M]. Heidelberg:Springer Berlin, 2008:1-5.
[83] JAFARINASAB M, SIROUSPOUR S. Adaptive motion control of aerial robotic manipulators based on virtual decomposition[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway:IEEE Press, 2015:1858-1863.
[84] LIPPIELLO V, CACACE J, SANTAMARIA-NAVARRO A, et al. Hybrid visual servoing with hierarchical task composition for aerial manipulation[J]. IEEE Robotics and Automation Letters, 2016, 1(1):259-266.
[85] BELLICOSO C D, BUONOCORE L R, LIPPIELLO V, et al. Design, modeling and control of a 5-DoF light-weight robot arm for aerial manipulation[C]//2015 23rd Mediterranean Conference on Control and Automation (MED). Piscataway:IEEE Press, 2015:853-858.
[86] THOMAS J, LOIANNO G, SREENATH K, et al. Toward image based visual servoing for aerial grasping and perching[C]//2014 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2014:2113-2118.
[87] SÁNCHEZ M I, ACOSTA J Á, OLLERO A. Integral action in first-order Closed-Loop Inverse Kinematics. Application to aerial manipulators[C]//2015 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2015:5297-5302.
[88] HEREDIA G, JIMENEZ-CANO A E, SANCHEZ I, et al. Control of a multirotor outdoor aerial manipulator[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2014:3417-3422.
[89] KOBILAROV M. Nonlinear trajectory control of multi-body aerial manipulators[J]. Journal of Intelligent & Robotic Systems, 2014, 73(1):679-692.
[90] KOBILAROV M. Discrete optimal control on lie groups and applications to robotic vehicles[C]//2014 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2014:5523-5529.
[91] 李选聪. 多旋翼无人机的机械臂抓取动力学分析和控制研究[D]. 哈尔滨:哈尔滨工业大学, 2016:1-20. LI X C. Dynamic analysis and control for multi-rotors grasping[D]. Harbin:Harbin Institute of Technology, 2016:1-20 (in Chinese).
[92] BRESCIANINI D, D'ANDREA R. Computationally efficient trajectory generation for fully actuated multirotor vehicles[J]. IEEE Transactions on Robotics, 2018, 34(3):555-571.
[93] GUO P, XU K, DENG H C, et al. Modeling and control of a hexacopter with a passive manipulator for aerial manipulation[J]. Complex & Intelligent Systems, 2021, 7(6):3051-3065.
[94] 郭品. 多旋翼空中机器人飞行操作的控制和规划方法研究[D]. 北京:北京航空航天大学, 2022:101-120. GUO P. Control and motion planning of multi-rotor aerial manipulation robots[D]. Beijing:Beihang University, 2022:101-120 (in Chinese).
[95] RODERICK W R T, CUTKOSKY M R, LENTINK D. Bird-inspired dynamic grasping and perching in arboreal environments[J]. Science Robotics, 2021, 6(61):eabj7562.
[96] HAWKES E W, CHRISTENSEN D L, EASON E V, et al. Dynamic surface grasping with directional adhesion[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2013:5487-5493.
[97] JIANG H, POPE M T, ESTRADA M A, et al. Perching failure detection and recovery with onboard sensing[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway:IEEE Press, 2015:1264-1270.
[98] JIANG H, POPE M T, HAWKES E W, et al. Modeling the dynamics of perching with opposed-grip mechanisms[C]//2014 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2014:3102-3108.
[99] POPE M T, KIMES C W, JIANG H, et al. A multimodal robot for perching and climbing on vertical outdoor surfaces[J]. IEEE Transactions on Robotics, 2017, 33(1):38-48.
[100] HOFFMANN G, HUANG H M, WASLANDER S, et al. Quadrotor helicopter flight dynamics and control:theory and experiment[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston:AIAA, 2007:6461.
[101] TOGNON M, FRANCHI A. Dynamics, control, and estimation for aerial robots tethered by cables or bars[J]. IEEE Transactions on Robotics, 2017, 33(4):834-845.
[102] 洪嘉振, 刘铸永. 变拓扑柔性多体系统接触碰撞动力学研究[J]. 动力学与控制学报, 2013, 11(1):5-11. HONG J Z, LIU Z Y. Study on contact/impact dynamics of flexible multibody system with topology variable[J]. Journal of Dynamics and Control, 2013, 11(1):5-11 (in Chinese).
[103] 洪嘉振. 计算多体系统动力学[M]. 北京:高等教育出版社, 1999:1-12. HONG J Z. Computational dynamics of multibody systems[M]. Beijing:Higher Education Press, 1999:1-12 (in Chinese).
[104] KÖVECSES J, FONT-LLAGUNES J M. An eigenvalue problem for the analysis of variable topology mechanical systems[J]. ASME Journal of Computational and Nonlinear Dynamics, 2009, 4(3):031006.
[105] CHEN H, FANG X B, NIE H. Analysis of carrier-based aircraft catapult launching based on variable topology dynamics[J]. Applied Sciences, 2021, 11(19):9037.
Outlines

/