ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Parametric aeroelastic modeling and flutter characteristic analysis of variable camber wing
Received date: 2022-04-28
Revised date: 2022-05-20
Accepted date: 2022-07-13
Online published: 2022-07-21
Supported by
National Natural Science Foundation of China(11972180)
The mass,stiffness,and damping characteristics of the morphing aircraft structure will change significantly during the morphing process to lead to incredible complexity of the aeroelastic effect. Efficient and accurate prediction of the flutter boundary is one of the challenging problems in the structural dynamics design of morphing aircraft. Existing nonparametric aeroelastic modeling methods can only analyze the flutter of a single morphing configuration,and repeated modeling is required for flutter calculation of morphing configuration,which may incur low computational efficiency and result in flutter boundary loss. This paper proposes a new parametric aeroelastic modeling for efficient flutter analysis of a wing with a continuously variable trailing edge. Based on the proposed aeroelastic modeling method,systematic analysis of parameter-varying flutter characteristics of a variable camber wing is investigated. To verify the accuracy of the parametric modeling method in parameter-varying flutter prediction,numerical calculation and comparative study were carried out in terms of parameter-varying modal characteristics, aerodynamic calculation and flutter prediction of variable camber wing. The simulation results indicate that the method proposed can efficiently and accurately predict parameter-varying flutter characteristics of morphing wing in the whole parameter space.
Key words: dynamics; morphing wing; aeroelasticity; vibration; flutter
Shijie YU , Xinghua ZHOU , Rui HUANG . Parametric aeroelastic modeling and flutter characteristic analysis of variable camber wing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(8) : 227346 -227346 . DOI: 10.7527/S1000-6893.2022.27346
1 | DECAMP R W, HARDY R. Mission adaptive wing research programme[J]. Aircraft Engineering and Aerospace Technology, 1981, 53(1): 10-11. |
2 | DECAMP R, HARDY R. Mission adaptive wing advanced research concepts[C]∥ 11th Atmospheric Flight Mechanics Conference. Reston: AIAA, 1984. |
3 | BONNEMA K, SMITH S. AFTI/F-111 mission adaptive wing flight research program[C]∥ 4th Flight Test Conference. Reston: AIAA, 1988. |
4 | JHA A K, KUDVA J N. Morphing aircraft concepts, classifications, and challenges[C]∥ Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies, 2004, 5388: 213-224. |
5 | PASTOR C, SANDERS B, JOO J J, et al. Kinematically designed flexible skins for morphing aircraft[C]∥ Proceedings of ASME 2006 International Mechanical Engineering Congress and Exposition, 2007: 89-95. |
6 | KUDVA J N, JARDINE A P, MARTIN C A, et al. Overview of the ARPA/WL “smart structures and materials development-smart wing” contract[C]∥ Smart Structures and Materials 1996: Industrial and Commercial Applications of Smart Structures Technologies, 1996, 2721: 10-16. |
7 | KUDVA J N, APPA K, VAN WAY C B, et al. Adaptive smart wing design for military aircraft: requirements, concepts, and payoffs[C]∥ Smart Structures and Materials 1995: Industrial and Commercial Applications of Smart Structures Technologies, 1995, 2447: 35-44. |
8 | BARTLEY-CHO J D, WANG D P, MARTIN C A, et al. Development of high-rate, adaptive trailing edge control surface for the smart wing phase 2 wind tunnel model[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 279-291. |
9 | HETRICK J, OSBORN R, KOTA S, et al. Flight testing of mission adaptive compliant wing[C]∥ 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
10 | DI MATTEO N, GUO S J, AHMED S, et al. Design and analysis of a morphing flap structure for high lift wing[C]∥ 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2010. |
11 | CAMPANILE L F. Modal synthesis of flexible mechanisms for airfoil shape control[J]. Journal of Intelligent Material Systems and Structures, 2008, 19(7): 779-789. |
12 | SINAPIUS M, MONNER H P, KINTSCHER M, et al. DLR’s morphing wing activities within the European network[J]. Procedia IUTAM, 2014, 10: 416-426. |
13 | 王彬文, 杨宇, 钱战森, 等. 机翼变弯度技术研究进展[J]. 航空学报, 2022, 43(1): 024943. |
WANG B W, YANG Y, QIAN Z S, et al. Research progress of variable camber wing technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 024943 (in Chinese). | |
14 | 刘世丽, 葛文杰, 李奎, 等. 基于杆索基结构的三维柔性变形机翼结构拓扑优化设计[J]. 机械科学与技术, 2008, 27(10): 1191-1194. |
LIU S L, GE W J, LI K, et al. Optimal structural design of a three-dimensional morphing aircraft wing based on strut and cable ground structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(10): 1191-1194 (in Chinese). | |
15 | 李飞. 飞机自适应机翼的驱动机构研究[D]. 南京: 南京航空航天大学, 2009. |
LI F. Research on adaptive wing structures based on NITI SMA actuator[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009 (in Chinese). | |
16 | 黄建. 新型零泊松比蜂窝结构力学性能及其变弯度机翼应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
HUANG J. Mechanical performances of a novel honeycomb design with zero Poisson’s ratio and its application in camber morphing wings[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese). | |
17 | WU Y, DAI Y T, YANG C, et al. Effect of trailing-edge morphing on flow characteristics around a pitching airfoil[J]. AIAA Journal, 2021, 61(1): 160-173. |
18 | 倪迎鸽, 侯赤, 万小朋, 等. 折叠机翼的参数化气动弹性建模与颤振分析[J]. 西北工业大学学报, 2015, 33(5): 788-793. |
NI Y G, HOU C, WAN X P, et al. Parametric aeroelastic modeling and flutter analysis for a folding wing[J]. Journal of Northwestern Polytechnical University, 2015, 33(5): 788-793 (in Chinese). | |
19 | ZHAO Y H, HU H Y. Parameterized aeroelastic modeling and flutter analysis for a folding wing[J]. Journal of Sound and Vibration, 2012, 331(2): 308-324. |
20 | ZHOU X H, HUANG R. Efficient nonlinear aeroelastic analysis of a morphing wing via parameterized fictitious mode method[J]. Nonlinear Dynamics, 2021, 105(1): 1-23. |
21 | ALBANO E, RODDEN W P. A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows[J]. AIAA Journal, 1969, 7(2): 279-285. |
22 | 杨宁, 吴志刚, 杨超, 等. 折叠翼的结构非线性颤振分析[J]. 工程力学, 2012, 29(2): 197-204. |
YANG N, WU Z G, YANG C, et al. Flutter analysis of a folding wing with structural nonlinearity[J]. Engineering Mechanics, 2012, 29(2): 197-204 (in Chinese). | |
23 | 刘艳. 连续变弯度后缘机翼静气动弹性分析及优化设计[D]. 西安: 西北工业大学, 2016. |
LIU Y. Aeroelasticity analysis method and optimization design for aircraft wing with variable camber continuous trailing edge[D]. Xi’an: Northwestern Polytechnical University, 2016 (in Chinese). | |
24 | 吴优, 戴玉婷, 张仁嘉, 等. 连续变弯度翼型动态气动特性数值模拟[J]. 北京航空航天大学学报, 2021, 47(6): 1241-1253. |
WU Y, DAI Y T, ZHANG R J, et al. Numerical simulation of dynamic aerodynamic characteristics of a camber morphing airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1241-1253 (in Chinese). | |
25 | ZHOU Q, CHEN G, RONCH A DA, et al. Reduced order unsteady aerodynamic model of a rigid aerofoil in gust encounters[J]. Aerospace Science and Technology, 2017, 63: 203-213. |
26 | WINTER M, HECKMEIER F M, BREITSAMTER C. CFD-based aeroelastic reduced-order modeling robust to structural parameter variations[J]. Aerospace Science and Technology, 2017, 67: 13-30. |
27 | SEBER G, BENDIKSEN O O. Nonlinear flutter calculations using finite elements in a direct Eulerian-Lagrangian formulation[J]. AIAA Journal, 2008, 46(6): 1331-1341. |
28 | LYU Z J, MARTINS J R R A. Aerodynamic design optimization studies of a blended-wing-body aircraft[J]. Journal of Aircraft, 2014, 51(5): 1604-1617. |
29 | KENWAY G K W, MARTINS J R R A. Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration[J]. Journal of Aircraft, 2014, 51(1): 144-160. |
30 | 郭同彪, 白俊强, 李立, 等. 民用客机变弯度机翼优化设计[J]. 中国科学: 技术科学, 2018, 48(1): 55-66. |
GUO T B, BAI J Q, LI L, et al. The morphing trailing-edge wing optimization design of the civil aircraft[J]. Scientia Sinica (Technologica), 2018, 48(1): 55-66 (in Chinese). | |
31 | JO Y, CHOI S, ZIENTARSKI L, et al. Aerodynamic characteristics and shape optimization of a variable camber compliant wing[C]∥ 34th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2016. |
32 | 梁煜, 单肖文. 大型民机翼型变弯度气动特性分析与优化设计[J]. 航空学报, 2016, 37(3): 790-798. |
LIANG Y, SHAN X W. Aerodynamic analysis and optimization design for variable camber airfoil of civil transport jet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 790-798 (in Chinese). | |
33 | 黄锐, 胡海岩. 飞行器非线性气动伺服弹性力学[J]. 力学进展, 2021, 51(3): 428-466. |
HUANG R, HU H Y. Nonlinear aeroservoelasticity of aircraft[J]. Advances in Mechanics, 2021, 51(3): 428-466 (in Chinese). | |
34 | KATZ J, PLOTKIN A. Low speed aerodynamics: From wing theory to panel methods[M]. New York: McGraw-Hill, 1991. |
35 | AMSALLEM D, CORTIAL J, CARLBERG K, et al. A method for interpolating on manifolds structural dynamics reduced-order models[J]. International Journal for Numerical Methods in Engineering, 2009, 80(9): 1241-1258. |
36 | AMSALLEM D, FARHAT C. Interpolation method for adapting reduced-order models and application to aeroelasticity[J]. AIAA Journal, 2008, 46(7): 1803-1813. |
37 | 詹玖榆, 周兴华, 黄锐. 基于流形切空间插值的折叠翼参数化气动弹性建模[J]. 力学学报, 2021, 53(4): 1103-1113. |
ZHAN J Y, ZHOU X H, HUANG R. Parametric aeroelastic modeling of folding wing based on manifold tangent space interpolation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1103-1113 (in Chinese). | |
38 | 郭同庆. 复杂组合体跨音速非定常气动力和颤振计算[D]. 南京: 南京航空航天大学, 2006. |
GUO T Q. Transonic unsteady aerodynamics and flutter computations for complex assemblies[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006 (in Chinese). | |
39 | YAO X J, HUANG R, HU H Y. Data-driven modeling of transonic unsteady flows and efficient analysis of fluid-structure stability[J]. Journal of Fluids and Structures, 2022, 111: 103549. |
/
〈 |
|
〉 |