Electronics and Electrical Engineering and Control

Coupling mechanism between bulk current injection probe and airborne shielded cable

  • Hongxu ZHAO ,
  • Haiyang SHEN ,
  • Ye CHEN ,
  • Xudong SHI
Expand
  • College of Electronic Information and Automation,Civil Aviation University of China,Tianjin 300300,China
E-mail: xdshi@cauc.edu.cn

Received date: 2022-02-18

  Revised date: 2022-04-06

  Accepted date: 2022-07-13

  Online published: 2022-07-21

Supported by

National Natural Science Foundation of China(51377161);Aeronautical Science Foundation of China(20182667010)

Abstract

The Bulk Current Injection (BCI) method is the standard test method for conducted immunity test of airborne equipment. Exploring the coupling mechanism between the BCI injection probe and the interconnecting cable of airborne equipment is very important to further expand the conducted immunity test capability. However, there is barely comprehensive analytical model to describe the coupling mechanism between the injection probe and the shielded cable. Firstly, a lumped parameter model is established according to the structural characteristics of the injection probe, and the relative permeability and parasitic parameters such as inductance and capacitance are obtained by measuring the reflection coefficient with open-circuit termination. The equivalent circuit of the injection probe is constructed according to Thevenin's theorem. Then, according to the spatial structure relationship between the injection probe and the shielded cable, the coupling and uncoupling sections are defined, and the respective chain-parameter equations are established and cascaded to gain the overall chain-parameter equation. Finally, the coupling analytical model of the BCI injection probe and the shielded cable is formed based on the termination equations. At the same time, the scattering parameters of the multi-port network formed by the injection probe and the shielded cable are tested based on the experimental platform. The accuracy of the analytical model is verified by comparing the terminal coupling voltage of the shielded cable. The results show that the error between the model and the experimental results is less than 3 dB from low frequency to resonance point, and the model can effectively describe the coupling mechanism between the injection probe and the shielded cable.

Cite this article

Hongxu ZHAO , Haiyang SHEN , Ye CHEN , Xudong SHI . Coupling mechanism between bulk current injection probe and airborne shielded cable[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(6) : 327053 -327053 . DOI: 10.7527/S1000-6893.2022.27053

References

1 魏光辉, 卢新福, 潘晓东. 强场电磁辐射效应测试方法研究进展与发展趋势[J]. 高电压技术201642(5): 1347-1355.
  WEI G H, LU X F, PAN X D. Recent progress and de-velopment in test methods for high intensity electromagnetic field radiation effect[J]. High Voltage Engineering201642(5): 1347-1355 (in Chinese).
2 杨茂松, 孙永卫, 潘晓东, 等. 电磁辐射效应实验技术研究进展[J]. 河北师范大学学报(自然科学版)201842(4): 318-321.
  YANG M S, SUN Y W, PAN X D, et al. The research progress of electromagnetic radiation effect experiment technology[J]. Journal of Hebei Normal University (Natural Science Edition)201842(4): 318-321 (in Chinese).
3 肖春燕, 高帅. 多电飞机电气负载引起的电磁干扰[J]. 北京航空航天大学学报201541(5): 793-801.
  XIAO C Y, GAO S. Electromagnetic interference caused by electric load of more electric aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics201541(5): 793-801 (in Chinese).
4 Environmental conditions and test procedures for airborne equipment: RTCA DO-160G [S]. 2014.
5 Requirements for the control of electromagnetic interference characteristics of subsystems and equipment: MIL-S [S]. 2015.
6 军用设备和分系统电磁发射和敏感度要求与测量: [S]. 2013.
  Electromagnetic emission and susceptibility requirement for equipment and subsystems: [S]. 2013 (in Chinese).
7 马振洋, 左晶, 史春蕾, 等. 机载电子设备屏蔽效能测试与优化[J]. 航空学报202041(7): 323538.
  MA Z Y, ZUO J, SHI C L, et al. Test and optimization of shield effectiveness for airborne electronic equipment[J]. Acta Aeronautica et Astronautica Sinica202041(7): 323538 (in Chinese).
8 潘晓东, 魏光辉, 万浩江, 等. 电子设备电磁辐射敏感度测试相关问题研究[J]. 强激光与粒子束202032(7): 78-84.
  PAN X D, WEI G H, WAN H J, et al. Research on sev-eral test issues of electromagnetic radiation susceptibility for electronic equipment[J]. High Power Laser and Particle Beams202032(7): 78-84 (in Chinese).
9 卢新福, 魏光辉, 潘晓东, 等. 差模电流注入等效电磁脉冲辐射技术仿真研究[J]. 中国舰船研究201510(2): 99-103,115.
  LU X F, WEI G H, PAN X D, et al. Simulation study on the differential-mode current injection equivalent to electromagnetic pulse radiation[J]. Chinese Journal of Ship Research201510(2): 99-103,115 (in Chinese).
10 GRASSI F, MARLIANI F, PIGNARI S A. Circuit modeling of injection probes for bulk current injection[J]. IEEE Transactions on Electromagnetic Compatibility200749(3): 563-576.
11 MASHRIKI I M, RAZAVI S M J, ARMAKI S H M. Analyzing the resonance resultant from the capacitive effects in bulk current injection probe[J]. Radioengineering202029(1): 109-116.
12 GRASSI F, PIGNARI S A. Bulk Current injection in twisted wire pairs with not perfectly balanced terminations[J]. IEEE Transactions on Electromagnetic Compatibility201355(6): 1293-1301.
13 TOSCANI N, GRASSI F, SPADACINI G, et al. Circuit and electromagnetic mod eling of bulk current injection test setups involving complex wiring harnesses[J]. IEEE Transactions on Electromagnetic Compatibility201860(6): 1752-1760.
14 TSUKADA A, OKAMOTO K, OKUGAWA Y, et al. System-level response of Ethernet linkage to bulk current injection into cables[C]∥2020 International Symposium on Electromagnetic Compatibility - EMC EUROPE. Piscataway: IEEE Press, 2020: 1-4.
15 DEROY P, PIPER S. Full-wave modeling of bulk current injection probe coupling to multi-conductor cable bundles[C]∥2016 IEEE International Symposium on Electromagnetic Compatibility. Piscataway: IEEE Press, 2016: 770-774.
16 KONDO Y, IZUMICHI M, WADA O. Simulation of bulk current injection test for automotive components using electromagnetic analysis[J]. IEEE Transactions on Electromagnetic Compatibility201860(4): 866-874.
17 NANDYALA C, LITZ H, HAFNER B, et al. Efficient use of circuit & 3D-EM simulation to optimize the automotive Bulk Current Injection (BCI) performance of Ultrasonic Sensors[C]∥2020 International Symposium on Electromagnetic Compatibility - EMC EUROPE. Piscataway: IEEE Press, 2020: 1-4.
18 杨茂松, 孙永卫, 潘晓东, 等. 平行双线BCI等效替代强场连续波电磁辐射实验研究[J]. 强激光与粒子束201830(9): 55-61.
  YANG M S, SUN Y W, PAN X D, et al. Testing technology of using bulk current injection with parallel double line as substitute for high field continuous wave electromagnetic radiation[J]. High Power Laser and Particle Beams201830(9): 55-61 (in Chinese).
19 杨茂松, 孙永卫, 潘晓东, 等. 双绞线BCI等效替代强场电磁辐射实验研究[J]. 微波学报201834(6): 72-77.
  YANG M S, SUN Y W, PAN X D, et al. Testing technology of using twisted pair cable BCI as substitution for high field continuous wave EM radiation[J]. Journal of Microwaves201834(6): 72-77 (in Chinese).
20 孙永卫, 杨茂松, 潘晓东, 等. 大电流注入探头对电磁辐射敏感性研究的影响[J]. 北京理工大学学报202040(12): 1362-1368.
  SUN Y W, YANG M S, PAN X D, et al. Influence of bulk current injection probe on electromagnetic radiation sensitivity research[J]. Transactions of Beijing Institute of Technology202040(12): 1362-1368 (in Chinese).
21 孙江宁, 潘晓东, 卢新福, 等. 双线系统双探头大电流注入等效强场电磁辐射试验方法[J]. 系统工程与电子技术202143(11): 3064-3071.
  SUN J N, PAN X D, LU X F, et al. Test method of bulk current injection into the equivalent high field electromagnetic radiation of two-wire system with two probes[J]. Systems Engineering and Electronics202143(11): 3064-3071 (in Chinese).
22 PAUL C R, MCKNIGHT J W. Prediction of crosstalk involving twisted pairs of wires-part I: A transmission-line model for twisted-wire pairs[J]. IEEE Transactions on Electromagnetic Compatibility1979, EMC-21(2): 92-105.
23 PAUL C R. Analysis of multiconductor transmission lines[M]. Piscataway: IEEE Press, 2007.
Outlines

/