Solid Mechanics and Vehicle Conceptual Design

Virtual open scenario construction for system of systems oriented design and application

  • LIU Hu ,
  • LIU Siliang ,
  • TIAN Yongliang ,
  • HUANG Xin ,
  • ZHAO Qinping
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
    2. State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China;
    3. School of Computer Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2022-05-24

  Revised date: 2022-06-12

  Online published: 2022-07-08

Abstract

Scenario as an important bridge between the aircraft designers and uses, its complexity rises ceaselessly with the systematic development of aircraft trend. Designers and users need more intuitive, more understandable, and more efficient methods in scenario description and construction, so as to have a unified "common context" for the design and application of related applications. Based on the analysis of typical scenario application, the definition and main characteristics of Virtual Open Scenario (VOS) oriented to system of systems oriented design and application are proposed, the Multi-Dimensional Mapping (MDM) of scenario elements and construction process of VOS are proposed. In view of the main links in the process, a two-layer evaluation matrix for tailoring MDM and open encapsulation from MDM instances to components are proposed, and a support system architecture that supports VOS composition and interaction is discussed to flexibly build a virtual open scenario family that can reflect different concerns. Finally, a virtual open scenario family construction case for multi-aircraft maritime search and rescue system is presented, which realizes the description of search and rescue helicopter scenario from global and local perspectives and verifies the effectiveness of the proposed concept and method.

Cite this article

LIU Hu , LIU Siliang , TIAN Yongliang , HUANG Xin , ZHAO Qinping . Virtual open scenario construction for system of systems oriented design and application[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(10) : 527504 -527504 . DOI: 10.7527/S1000-6893.2022.27504

References

[1] 王雨农, 毕文豪, 张安, 等. 基于DoDAF的民机MBSE研制方法[J]. 系统工程与电子技术, 2021, 43(12):3579-3585. WANG Y N, BI W H, ZHANG A, et al. DoDAF-based civil aircraft MBSE development method[J]. Systems Engineering and Electronics, 2021, 43(12):3579-3585 (in Chinese).
[2] 赵良玉, 叶俊杰, 何琪, 等. 基于MBSE的民机起飞场景仿真[J]. 系统仿真学报, 2021, 33(10):2499-2510. ZHAO L Y, YE J J, HE Q, et al. Simulation of civil aircraft takeoff scenario based on MBSE[J]. Journal of System Simulation, 2021, 33(10):2499-2510 (in Chinese).
[3] 李德林, 毕文豪, 张安, 等. 基于MBSE的民机研制过程管理[J]. 系统工程与电子技术, 2021, 43(8):2209-2220. LI D L, BI W H, ZHANG A, et al. MBSE-based process management in the development of civil aircraft[J]. Systems Engineering and Electronics, 2021, 43(8):2209-2220 (in Chinese).
[4] 王文跃,侯俊杰,毛寅轩,等. 面向复杂产品研制的MBSE体系架构及其发展趋势研究[J/OL]. 控制与决策, https://doi.org/10.13195/j.kzyjc.2021.1354. WANG W Y, HOU J J, MAO Y X, et al. Research on MBSE architecture for complex product development and trends[J/OL]. Control and Decision, https://doi.org/10.13195/j.kzyjc.2021.1354 (in Chinese).
[5] 崔艳林, 王巍巍, 王乐. 美国数字工程战略实施途径[J]. 航空动力, 2021(4):84-86. CUI Y L, WANG W W, WANG L. US digital engineering implementation strategy[J]. Aerospace Power, 2021(4):84-86 (in Chinese).
[6] ZIMMERMAN P, GILBERT T, SALVATORE F. Digital engineering transformation across the Department of Defense[J]. The Journal of Defense Modeling and Simulation:Applications, Methodology, Technology, 2019, 16(4):325-338.
[7] 肖楚琬, 韩维, 孙阳, 等. 基于军事需求工程的军用飞机EWIS设计需求分析[J]. 海军航空工程学院学报, 2018, 33(6):539-545. XIAO C W, HAN W, SUN Y, et al. Requirement analysis of military aircraft EWIS design based on military requirements engineering[J]. Journal of Naval Aeronautical and Astronautical University, 2018, 33(6):539-545 (in Chinese).
[8] 沈腾, 孟繁鑫, 张浩驰. 需求工程方法在机载系统研发中的应用研究[J]. 航空科学技术, 2019, 30(12):23-29. SHEN T, MENG F X, ZHANG H C. Application research of requirement engineering method in airborne system development[J]. Aeronautical Science & Technology, 2019, 30(12):23-29 (in Chinese).
[9] 曾卫平, 孙强, 占日新, 等. 直升机需求工程方法与应用研究[J]. 直升机技术, 2020(3):13-18. ZENG W P, SUN Q, ZHAN R X, et al. Research on helicopter requirement engineering method and application[J]. Helicopter Technique, 2020(3):13-18 (in Chinese).
[10] JAMSHIDI M. Systems of systems engineering:Principles and applications[M]. Boca Raton:CRC Press, 2017.
[11] KEATING C, ROGERS R, UNAL R, et al. System of systems engineering[J]. Engineering Management Journal, 2003, 15(3):36-45.
[12] LIU H, TIAN Y L, GAO Y, et al. System of systems oriented flight vehicle conceptual design:Perspectives and progresses[J]. Chinese Journal of Aeronautics, 2015, 28(3):617-635.
[13] LIU H, TIAN Y L, ZHANG C Y, et al. Evaluation model of design for operation and architecture of hierarchical virtual simulation for flight vehicle design[J]. Chinese Journal of Aeronautics, 2012, 25(2):216-226.
[14] PAN X, YIN B S, HU J M. Modeling and simulation for SoS based on the DoDAF framework[C]//The Proceedings of 2011 9th International Conference on Reliability, Maintainability and Safety. Piscataway:IEEE Press,2011:1283-1287.
[15] 申彦君. 基于DoDAF的体系结构建模在反潜飞机任务系统设计中的应用[J]. 电光与控制, 2014, 21(9):90-94. SHEN Y J. Application of DoDAF based architectural model in mission system design of anti-submarine aircraft[J]. Electronics Optics & Control, 2014, 21(9):90-94 (in Chinese).
[16] 刘思彤, 张占月, 许益乔, 等. 基于DoDAF的高超飞行器防御作战体系结构建模[J]. 军事运筹与系统工程, 2021, 35(3):73-80. LIU S T, ZHANG Z Y, XU Y Q, et al. Modeling for defense combat system architecture of hypersonic vehicle based on DoDAF[J]. Military Operations Research and Systems Engineering, 2021, 35(3):73-80 (in Chinese).
[17] 高悦, 茹乐, 迟文升, 等. 基于体系结构设计的空战系统任务元模型建模[J]. 系统工程与电子技术, 2021, 43(11):3229-3238. GAO Y, RU L, CHI W S, et al. Task meta-model modeling of air combat system based on system architecture design[J]. Systems Engineering and Electronics, 2021, 43(11):3229-3238 (in Chinese).
[18] WEILKIENS T. Systems engineering with SysML/UML:Modeling, analysis, design[M]. Burlington:The MK/OMG Press, 2011:143-270.
[19] HUANG E, RAMAMURTHY R, MCGINNIS L F. System and simulation modeling using SYSML[C]//2007 Winter Simulation Conference. Piscataway:IEEE Press,2007:796-803.
[20] XIAO F, CHEN B, LI R, et al. A model-based system engineering approach for aviation system design by applying SysML modeling[C]//2020 Chinese Control and Decision Conference (CCDC). Piscataway:IEEE Press,2020:1361-1366.
[21] MANE M, CROSSLEY W A, NUSAWARDHANA. System-of-systems inspired aircraft sizing and airline resource allocation via decomposition[J]. Journal of Aircraft, 2007, 44(4):1222-1235.
[22] 周健, 龚春林, 粟华, 等. 飞行器体系优化设计问题[J]. 航空学报, 2018, 39(11):222235. ZHOU J, GONG C L, SU H, et al. Optimal design problem of system of systems of flight vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11):222235 (in Chinese).
[23] PAPAGEORGIOU A, ÖLVANDER J, AMADORI K, et al. Multidisciplinary and multifidelity framework for evaluating system-of-systems capabilities of unmanned aircraft[J]. Journal of Aircraft, 2019, 57(2):317-332.
[24] SUN X Q, GOLLNICK V, LI Y C, et al. Intelligent multicriteria decision support system for systems design[J]. Journal of Aircraft, 2014, 51(1):216-225.
[25] 杨昌发, 任勇, 冷智辉, 等. 航空集群系统空对地作战效能涌现方法研究[J]. 火力与指挥控制, 2021, 46(6):47-51. YANG C F, REN Y, LENG Z H, et al. Research on effectiveness emergence method for aircraft swarms system in air-to-ground combat[J]. Fire Control & Command Control, 2021, 46(6):47-51 (in Chinese).
[26] WANG Z, LIU S F, FANG Z G. Research on SoS-GERT network model for equipment system of systems contribution evaluation based on joint operation[J]. IEEE Systems Journal, 2020, 14(3):4188-4196.
[27] 王在刚, 赵晓哲. 舰载直升机拦截鱼雷的战术可行性研究[J]. 火力与指挥控制, 2005, 30(2):66-68. WANG Z G, ZHAO X Z. Research on tactical feasibility of intercepting torpedo by carrier helicopter[J]. Fire Control & Command Control, 2005, 30(2):66-68 (in Chinese).
[28] 王在刚, 熊正祥, 孙永侃. 直升机对鱼雷预警的可行性及战术模型[J]. 火力与指挥控制, 2007, 32(2):34-36, 40. WANG Z G, XIONG Z X, SUN Y K. Research on the feasibility and tactical model of helicopter warning against torpedo[J]. Fire Control and Command Control, 2007, 32(2):34-36, 40 (in Chinese).
[29] BASTIAN N D, FULTON L V, MITCHELL R, et al. The future of vertical lift:Initial insights for aircraft capability and medical planning[J]. Military Medicine, 2012, 177(7):863-869.
[30] KARPUK S, ELHAM A. Influence of novel airframe technologies on the feasibility of fully-electric regional aviation[J]. Aerospace, 2021, 8(6):163.
[31] CONNORS C D, MILLER J O, LUNDAY B J. Using agent-based modeling and a designed experiment to simulate and analyze a new air-to-air missile[J]. The Journal of Defense Modeling and Simulation:Applications, Methodology, Technology, 2016, 13(3):321-330.
[32] GAO Y, LIU H, ZHOU Y M. An evaluation method of combat aircraft contribution effectiveness based on mission success space design[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(1):273-286.
[33] XIONG P S, LIU H, TIAN Y L. Mission effectiveness evaluation of manned/unmanned aerial team based on OODA and agent-based simulation[C]//AIVR 2019:Proceedings of the 2019 3rd International Conference on Artificial Intelligence and Virtual Reality. Piscataway:Association for Computing Machinery, 2019:31-37.
[34] SUN X, LIU H, TIAN Y L, et al. Team effectiveness evaluation and virtual reality scenario mapping model for helicopter emergency rescue[J]. Chinese Journal of Aeronautics, 2020, 33(12):3306-3317.
[35] AU T A, HOEK P J, LO E H S. Combat analysis of joint force options using agent-based simulation[C]//2018 Military Communications and Information Systems Conference (MilCIS). Piscataway:IEEE Press,2018:1-7.
[36] BILTGEN P T. A methodology for capability-based technology evaluation for systems-of-systems[D]. Atlanta:Georgia Institute of Technology, 2007.
[37] LUMMUS R. Mission battle management system fighter engagement manager concept[C]//AIAA International Air and Space Symposium and Exposition:The Next 100 Years. Reston:AIAA, 2003:2857.
[38] GUO Y, GAO Y, LIU H, et al. Mission simulation and stealth effectiveness evaluation based on fighter engagement manager (FEM)[J]. DEStech Transactions on Computer Science and Engineering, 2017(cece):328-335.
[39] NOSEWORTHY J R. The test and training enabling architecture (TENA) supporting the decentralized development of distributed applications and LVC simulations[C]//2008 12th IEEE/ACM International Symposium on Distributed Simulation and Real-Time Applications. Piscataway:IEEE Press,2008.
[40] FVGENSCHUH A, MARAHRENS S, JOHANNSMANN L M, et al. Using computer-generated virtual realities, operations research, and board games for conflict simulations[J]. Simulation and Wargaming, 2021:273-287.
[41] 阮开智, 袁晴晴, 翟文华, 等. 基于Xsim平台的防空导弹武器系统仿真平台设计[J]. 系统仿真学报, 2020, 32(1):142-148. RUAN K Z, YUAN Q Q, ZHAI W H, et al. Design of air defense missile weapon system simulation platform based on xsim platform[J]. Journal of System Simulation, 2020, 32(1):142-148 (in Chinese).
[42] 刘波韬, 李定主, 王学文, 等. 基于XSim仿真平台的榴弹炮建模与弹道仿真[J]. 火力与指挥控制, 2022, 47(3):173-179. LIU B T, LI D Z, WANG X W, et al. Howitzer modeling and trajectory simulation based on XSimStudio simulation platform[J]. Fire Control & Command Control, 2022, 47(3):173-179 (in Chinese).
[43] BERNARD J, CRUZ-NEIRA C, OLIVER J, et al. Command and control embedded training:Visualization of the joint battlespace:AFRL-IF-RS-TR-2004-177[R]. New York:Air Force Research Laboratory, 2004.
[44] 张延, 余红英, 戚艺雪, 等. 基于Unity3D/3DMAX的导弹视景仿真系统[J]. 科技视界, 2013(25):151, 199. ZHANG Y, YU H Y, QI Y X, et al. Missile visual simulation system based on Unity3D/3DMAX[J]. Science & Technology Vision, 2013(25):151, 199 (in Chinese).
[45] 王远明, 卢宽, 贾倩, 等. 基于Unigine的舰载航空视景仿真技术研究[J]. 系统仿真学报, 2017, 29(9):2087-2092. WANG Y M, LU K, JIA Q, et al. Research on techniques of shipboard aviation scene simulation based on unigine[J]. Journal of System Simulation, 2017, 29(9):2087-2092 (in Chinese).
[46] 孙旺, 刘西, 南英. 基于MFC的Vega Prime航空飞行器动态视景仿真[J]. 指挥控制与仿真, 2019, 41(5):87-94. SUN W, LIU X, NAN Y. Dynamic visual simulation of aviation aircraft using Vega prime based on MFC[J]. Command Control & Simulation, 2019, 41(5):87-94 (in Chinese).
[47] 王婷婷, 林德福, 朱永伟. 基于无人直升机的任务推演视景仿真研究[J]. 计算机仿真, 2019, 36(9):66-69. WANG T T, LIN D F, ZHU Y W. Mission rehearsal visual simulation research based on unmanned helicopter[J]. Computer Simulation, 2019, 36(9):66-69 (in Chinese).
[48] 周祥鑫. 基于FlightGear的直升机吊篮救助仿真研究[D]. 大连:大连海事大学, 2020:58. ZHOU X X. FlightGear-based marine helicopter hanging basket rescue training simulation research[D]. Dalian:Dalian Maritime University, 2020:58 (in Chinese).
[49] 陈铭杰, 池程芝, 刘博文, 等. 基于场景的民用飞机健康管理可视化仿真研究与实现[J]. 航空科学技术, 2020, 31(7):35-39. CHEN M J, CHI C Z, LIU B W, et al. Research and implementation of visual simulation of civil aircraft health management based on scenario[J]. Aeronautical Science & Technology, 2020, 31(7):35-39 (in Chinese).
[50] CHENG R, WU N, CHEN S, et al. Will metaverse be nextg internet? Vision, hype, and reality[J]. ArXiv.Preprint.arXiv:2201.12894, 2022.
[51] DUAN H H, LI J Y, FAN S Z, et al. Metaverse for social good:A university campus prototype[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York:ACM, 2021.
[52] CARROLL J M. Five reasons for scenario-based design[J]. Interacting with Computers, 2000, 13(1):43-60.
[53] GO K, CARROLL J M. The blind men and the elephant[J]. Interactions, 2004, 11(6):44-53.
[54] ULBRICH S, MENZEL T, RESCHKA A, et al. Defining and substantiating the terms scene, situation, and scenario for automated driving[C]//2015 IEEE 18th International Conference on Intelligent Transportation Systems. Piscataway:IEEE Press,2015:982-988.
[55] JAFER S, CHHAYA B, DURAK U, et al. Formal scenario definition language for aviation:Aircraft landing case study[C]//AIAA Modeling and Simulation Technologies Conference. Reston:AIAA, 2016.
Outlines

/