Electronics and Electrical Engineering and Control

Distributed fixed-time output-feedback attitude consensus control for multiple spacecraft with input saturation

  • Chuang XU ,
  • Baolin WU
Expand
  • Research Center of Satellite Technology,Harbin Institute of Technology,Harbin 150001,China

Received date: 2022-05-18

  Revised date: 2022-06-09

  Accepted date: 2022-07-04

  Online published: 2022-07-08

Supported by

National Natural Science Foundation of China(61873312)

Abstract

This paper studies the distributed fixed-time output-feedback attitude consensus control problem of multiple spacecraft with input saturation under directed graph. First, only a part of the spacecrafts can obtain the attitude and angular velocity state information of the leader. A fixed-time observer of leader’s attitude is designed to estimate leader’s attitude. Then, for the issue that spacecrafts being unable to measure their own ungular velocity, this paper proposes a fixed-time state observer to estimate the angular velocity of spacecraft in a fixed time. Based on the estimated leader’s attitude and spacecraft angular velocity, a fixed-time attitude tracking controller is proposed, and the fixed-time stability of the spacecraft attitude system is proved rigorously. Finally, some simulations are conducted, and simulation results verify the effectiveness of the proposed control scheme.

Cite this article

Chuang XU , Baolin WU . Distributed fixed-time output-feedback attitude consensus control for multiple spacecraft with input saturation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(10) : 327465 -327465 . DOI: 10.7527/S1000-6893.2022.27465

References

1 DIMAROGONAS D, TSIOTRAS P, KYRIAKOPOULOS K. Leader-follower cooperative attitude control of multiple rigid bodies[J]. Systems & Control Letters200958(6):429-435.
2 DU H B, LI S H, QIAN C J. Finite-time attitude tracking control of spacecraft with application to attitude synchronization[J]. IEEE Transactions on Automatic Control201156(11): 2711-2717.
3 CAI H, HUANG J. The leader-following attitude control of multiple rigid spacecraft systems[J]. Automatica201450(4): 1109-1115.
4 BEARD R W, LAWTON J, HADAEGH F Y. A coordination architecture for spacecraft formation control[J]. IEEE Transactions on Control Systems Technology20019(6): 777-790.
5 REN W, BEARD R. Virtual structure based spacecraft formation control with formation feedback: AIAA-2002-4963[R]. Reston: AIAA, 2002.
6 REN W, BEARD R W. A decentralized scheme for spacecraft formation flying via the virtual structure approach[C]∥ Proceedings of the 2003 American Control Conference. Piscataway: IEEE Press, 2003: 1746-1751.
7 MALLA R, WATKINS J, PIPER G. Study of pointing maneuvers for a spacecraft virtual structure formation[C]∥ Proceeding of the Thirty-Eighth Southeastern Symposium on System Theory. Piscataway: IEEE Press, 2006: 99-103.
8 AHN C, KIM Y. Point targeting of multisatellites via a virtual structure formation flight scheme[J]. Journal of Guidance, Control, and Dynamics200932(4): 1330-1344.
9 CHANG I, PARK S Y, CHOI K H. Decentralized coordinated attitude control for satellite formation flying via the state-dependent Riccati equation technique[J]. International Journal of Non-Linear Mechanics200944(8): 891-904.
10 周稼康, 胡庆雷, 马广富, 等. 带时变通信时间延迟的卫星编队姿态协同自适应L2增益控制[J]. 航空学报201132(2): 321-329.
  ZHOU J K, HU Q L, MA G F, et al. Adaptive L2-gain cooperative attitude control of satellite formation flying with time-varying delay[J]. Acta Aeronautica et Astronautica Sinica201132(2): 321-329 (in Chinese).
11 吕跃勇, 胡庆雷, 马广富, 等. 考虑执行机构误差的编队卫星姿态分布式时延滑模自适应协同控制[J]. 航空学报201132(9): 1686-1695.
  LU Y Y, HU Q L, MA G F, et al. Decentralized time-delay adaptive sliding mode control for attitude coordination of satellite formation under actuator misalignment[J]. Acta Aeronautica et Astronautica Sinica201132(9): 1686-1695 (in Chinese).
12 张保群, 宋申民, 陈兴林. 编队卫星分布式鲁棒饱和姿态协同控制[J]. 航空学报201132(9): 1644-1655.
  ZHANG B Q, SONG S M, CHEN X L. Decentralized robust saturated attitude coordination control of satellites within formation[J]. Acta Aeronautica et Astronautica Sinica201132(9): 1644-1655 (in Chinese).
13 XU C, WU B, WANG D. Distributed dynamic event-triggered adaptive attitude consensus control of multiple spacecraft[J]. Acta Astronautica2022196: 220-230.
14 XIE X, SHENG T, HE L. Robust attitude consensus control for multiple spacecraft systems with unknown disturbances via variable structure control and adaptive sliding mode control[J]. Advances in Space Research202269(3): 1588-1601.
15 GARG K. Advances in the theory of fixed-time stability with applications in constrained control and optimization[D]. Ann Arbor: University of Michigan, 2021.
16 ANDRIEU V, PRALY L, ASTOLFI A. Homogeneous approximation, recursive observer design, and output feedback[J]. SIAM Journal on Control and Optimization200847(4): 1814-1850.
17 PARSEGOV S, POLYAKOV A, SHCHERBAKOV P. Nonlinear fixed-time control protocol for uniform allocation of agents on a segment[C]∥ IEEE 51st IEEE Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2013: 7732-7737.
18 SUI W S, DUAN G R, HOU M Z, et al. Distributed fixed-time attitude synchronization control for multiple rigid spacecraft[J].International Journal of Control, Automation and Systems201917(5): 1117-1130.
19 XU C, WU B, WANG D, et al. Distributed fixed-time output-feedback attitude consensus control for multiple spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems202056(6): 4779-4795.
20 HU Q, CHEN W, GUO L, et al. Adaptive fixed-time attitude tracking control of spacecraft with uncertainty-rejection capability[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems202252(7): 4634-4647.
21 HONG H, YU C, YU W. Adaptive fixed-time control for attitude consensus of disturbed multi-spacecraft systems with directed topologies[J]. IEEE Transactions on Network Science and Engineering20229(3): 1451-1461.
22 HUA C, LI Y, GUAN X. Finite/fixed-time stabilization for nonlinear interconnected systems with dead-zone input[J]. IEEE Transactions on Automatic Control201762(5): 2554-2560.
23 ZHANG Z, WU Y. Fixed-time regulation control of uncertain nonholonomic systems and its applications[J]. International Journal of Control201790(7): 1327-1344.
24 HUANG J, ZHANG Z. Nonlinear feedback design for fixed-time tracking of a class of nonlinear systems[J]. International Journal of Computer Mathematics201794(7): 1349-1362.
25 TIAN B, ZUO Z, YAN X, et al. A fixed-time output feedback control scheme for double integrator systems[J]. Automatica201780: 17-24.
26 ZOU A M, LI W H. Fixed-time output-feedback consensus tracking control for second-order multiagent systems[J]. International Journal of Robust and Nonlinear Control201929(13): 4419-4434.
27 ZOU A M, FAN Z. Fixed-time attitude tracking control for rigid spacecraft without angular velocity measurements[J]. IEEE Transactions on Industrial Electronics202067(8): 6795-6805.
28 ZOU A M, FAN Z. Distributed fixed-time attitude coordination control for multiple rigid spacecraft[J]. International Journal of Robust and Nonlinear Control202030(1): 266-281.
29 SHANG Y L, YE Y M. Leader-follower fixed-time group consensus control of multiagent systems under directed topology[J]. Complexity20172017: 1-9.
30 BACCIOTTI A, ROSIER L. Liapunov functions and stability in control theory[M]. Berlin: Springer, 2005.
31 ROSIER L. Homogeneous Lyapunov function for homogeneous continuous vector field[J]. Systems & Control Letters199219(6): 467-473.
32 QIAN C J, LIN W. A continuous feedback approach to global strong stabilization of nonlinear systems[J]. IEEE Transactions on Automatic Control200146(7): 1061-1079.
33 HU D Y, ZHANG S J, ZOU A M. Velocity-free fixed-time attitude cooperative control for spacecraft formations under directed graphs[J]. International Journal of Robust and Nonlinear Control202131(8): 2905-2927.
34 SHI X L, CAO J D, WEN G H, et al. Finite-time stability for network systems with nonlinear protocols over signed digraphs[J]. IEEE Transactions on Network Science and Engineering20207(3): 1557-1569.
35 KRASTANOV M. Forward invariant sets, homogeneity and small-time local controllability[J]. Banach Center Publications199532(1): 287-300.
36 HU Q L, ZHANG J, FRISWELL M I. Finite-time coordinated attitude control for spacecraft formation flying under input saturation[J]. Journal of Dynamic Systems, Measurement, and Control2015137(6): 061012.
Outlines

/