ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Aerodynamic characteristics and crosswind counteraction of isolated tail rotor in crosswind environment
Received date: 2022-05-16
Revised date: 2022-06-01
Accepted date: 2022-06-29
Online published: 2022-07-08
Supported by
National Key Research and Development Program(2019YFE0192600);National Natural Science Foundation of China(52006098);Priority Academic Program Development of Jiangsu Higher Education Institutions;Nanjing Institute of Technology(YKJ201943)
The tail rotor vortex ring seriously endangers the flight safety of helicopters. To explore the influence of the vortex ring on the induced velocity field near the rotor disk and explain the cause of unsteady pulsation of blade thrust, we construct a set of numerical calculation methods for the tail rotor vortex ring based on unsteady Reynolds averaged Navier Stokes equations, and conduct aerodynamic analysis combining the blade element theory and the circular vortex ring model. Meanwhile, an airfoil optimization framework with the continuous adjoint turbulence is established to solve the inherent defects of the frozen eddy viscosity assumption, and the obtained airfoil is used in the design of tail rotors to improve the crosswind counteraction ability. The results show that the induced velocity field near the propeller disk is sensitive to the inlet velocity of the cross wind. In the typical vortex ring state, the cross wind of 14.65 m/s causes the vortex strength of the vortex ring to increase and change continuously, induces decrease and dynamic change of the effective angle of attack of the blade section, and further reduces the tail rotor thrust to 58.5% of the original value with high-frequency pulsation. The adjoint turbulence method is superior to the frozen eddy viscosity assumption in terms of optimization convergence. Compared with those of the base tail rotor, the thrust of the tail rotor obtained by optimizing the airfoil and the figure of merit are increased by 10.9% and 3.9%, respectively, and the critical crosswind velocity of the tail rotor entering the vortex ring is expanded.
Yukun SUN , Long WANG , Tongguang WANG , Yaoru QIAN , Quanwei ZHENG . Aerodynamic characteristics and crosswind counteraction of isolated tail rotor in crosswind environment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(10) : 127454 -127454 . DOI: 10.7527/S1000-6893.2022.27454
1 | 黄明其, 王亮权, 何龙, 等. 旋翼涡环状态气动特性和参数变化的风洞试验[J]. 航空动力学报, 2019, 34(11): 2305-2315. |
HUANG M Q, WANG L Q, HE L, et al. Wind tunnel test of aerodynamic characteristics and parametric variation for rotor in vortex ring state[J]. Journal of Aerospace Power, 2019, 34(11): 2305-2315 (in Chinese). | |
2 | 李高华. 直升机旋翼涡环状态流场高分辨率数值模拟方法研究[D]. 上海: 上海交通大学, 2018: 128-129. |
LI G H. Study of high resolution numerical method for helicopter rotor in vortex ring state[D]. Shanghai: Shanghai Jiao Tong University, 2018: 128-129 (in Chinese). | |
3 | 曹栋, 曹义华. 垂直下降状态下的旋翼三维流场数值模拟[J]. 北京航空航天大学学报, 2012, 38(5): 641-647. |
CAO D, CAO Y H. Three dimensional numerical simulation of rotor in vertical descent flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(5): 641-647 (in Chinese). | |
4 | DZIUBINSKI A, STALEWSKI W. Vortex ring state on modelling and simulation using actuator disc[C]∥ 21st European Conference Simulation Ecms. Prague: ECMS Press, 2007: 397-402. |
5 | GASPAROVIC P, KOVACS R, FOZO L. Numerical investigation of vortex ring state of tail rotor and uncontrolled rotation of helicopter[C]∥2016 IEEE 14th International Symposium on Applied Machine Intelligence and Informatics (SAMI). Piscataway: IEEE Press, 2016: 269-273. |
6 | MAKEEV P V, IGNATKIN Y M, SHOMOV A I.Numerical investigation of full scale coaxial main rotor aerodynamics in hover and vertical descent[J].Chinese Journal of Aeronautics, 2021, 34(5): 666-683. |
7 | 王军杰, 俞志明, 陈仁良, 等. 倾转四旋翼飞行器垂直飞行状态气动特性[J]. 航空动力学报, 2021, 36(2): 249-263. |
WANG J J, YU Z M, CHEN R L, et al. Aerodynamic characteristics of quad tilt rotor aircraft in vertical flight[J]. Journal of Aerospace Power, 2021, 36(2): 249-263 (in Chinese). | |
8 | 王军杰, 陈仁良, 王志瑾, 等. 多旋翼飞行器涡环状态数值模拟[J]. 航空动力学报, 2020, 35(5): 1018-1028. |
WANG J J, CHEN R L, WANG Z J, et al. Numerical simulation of multi-rotor aircraft in vortex ring state[J]. Journal of Aerospace Power, 2020, 35(5): 1018-1028 (in Chinese). | |
9 | ZALEWSKI W. Numerical simulation of vortex ring state phenomenon for the mi2 type helicopter tail rotor[J]. Journal of KONES Powertrain and Transport, 2016, 23(2): 437-442. |
10 | WIESNER W, KOHLER G. Tail rotor performance in presence of main rotor, ground, and winds[J]. Journal of the American Helicopter Society, 1974, 19(3): 2-9. |
11 | EFIMOV V V, CHERNIGIN K O. Vortex ring state as a cause of a single-rotor helicopter unanticipated yaw[J]. Aerospace Systems, 2022, 5(3): 413-418. |
12 | GUBBELS A W, CARIGNAN S J R P. Handling qualities assessment of the effects of tail boom strakes on the Bell 412 helicopter[J]. Aerospace Science and Technology, 2005, 9(5): 436-444. |
13 | 沙虹伟. 尾桨倾斜和可动平尾对直升机性能/品质影响及设计方法研究[D]. 南京: 南京航空航天大学, 2013: 34-42. |
SHA H W. Research on the influence of tail rotor tilting and movable stabilator on helicopter performance/flying qualities and designing method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 34-42. (in Chinese) | |
14 | EBRAHIMI M, JAHANGIRIAN A. A hierarchical parallel strategy for aerodynamic shape optimization with genetic algorithm[J]. Scientia Iranica, 2015, 22(6): 2379-2388. |
15 | TIMNAK N, JAHANGIRIAN A. Multi-point optimization of transonic airfoils using an enhanced genetic algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(7): 1347-1360. |
16 | JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3): 233-260. |
17 | MARTINS J R R A, KROO I, ALONSO J. An automated method for sensitivity analysis using complex variables[C]∥38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000: 689. |
18 | KIM S, ALONSO J J, JAMESON A. Multi-element high-lift configuration design optimization using viscous continuous adjoint method[J]. Journal of Aircraft, 2004, 41(5): 1082-1097. |
19 | AMINI Y, EMDAD H, FARID M. Adjoint shape optimization of airfoils with attached Gurney flap[J]. Aerospace Science and Technology, 2015, 41: 216-228. |
20 | 罗佳奇, 杨婧. 基于伴随方法的单级低速压气机气动设计优化[J]. 航空学报, 2020, 41(5): 623368. |
LUO J Q, YANG J. Aerodynamic design optimization of a single low-speed compressor stage by an adjoint method[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623368 (in Chinese). | |
21 | LYU Z J, KENWAY G K, PAIGE C, et al. Automatic differentiation adjoint of the Reynolds-averaged navier-stokes equations with a turbulence model[C]∥21st AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2013: 2581 |
22 | SIGNOR D, YAMAUCHI G, SMITH C A, et al. Performance and loads data from an outdoor hover test of a Lynx tail rotor[R]. Washington D. C.: NASA, 1989 |
23 | 缪涛, 陈波, 马率, 等. 基于动态重叠网格方法的尾翼对螺旋桨滑流的影响[J]. 航空学报, 2019, 40(4): 622338. |
MIAO T, CHEN B, MA S, et al. Influence of tail wing on propeller slipstream based on dynamic overlapping grid method[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 622338 (in Chinese). | |
24 | 厉聪聪, 史勇杰, 徐国华, 马太行. 基于前缘下垂的提升旋翼悬停气动特性研究[J]. 南京航空航天大学学报(英文版), 2021, 38():10-16. |
LI C C, SHI Y J, XU G H. Research on aerodynamic characteristics of hovering rotor based on leading edge droop[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2021, 38(Sup 1): 10-16. | |
25 | OTHMER C, DE VILLIERS E, WELLER H. Implementation of a continuous adjoint for topology optimization of ducted flows[C]∥18th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2007: 3947. |
26 | VURUSKAN A, HOSDER S. Impact of turbulence models and shape parameterization on robust aerodynamic shape optimization[J]. Journal of Aircraft, 2019, 56(3): 1099-1115. |
27 | LI L, YUAN T Y, LI Y, et al. Multidisciplinary design optimization based on parameterized free-form deformation for single turbine[J]. AIAA Journal, 2019, 57(5): 2075-2087. |
28 | 辛宏, 高正. 直升机涡环状态速度边界的试验研究[J]. 南京航空航天大学学报, 1995, 27(4): 439-444. |
XIN H, GAO Z. An experimental investigation on the boundary of helicopter vortex-ring state[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 1995, 27(4): 439-444. (in Chinese) | |
29 | HAYMAN K J, REDDY K. Calculation of the velocity field generated by a helicopter main and tail rotors in hover[R]. Melbourne: Aeronautical Research Laboratories, 1984. |
30 | GHARIB M, RAMBOD E, SHARIFF K. A universal time scale for vortex ring formation[J]. Journal of Fluid Mechanics, 1998, 360: 121-140. |
/
〈 |
|
〉 |