Fluid Mechanics and Flight Mechanics

Simulation research and key technologies analysis of intelligent stratospheric aerostat Loon

  • Xiaolong DENG ,
  • Xixiang YANG ,
  • Bingjie ZHU ,
  • Zhenyu MA ,
  • Zhongxi HOU
Expand
  • College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China

Received date: 2022-05-10

  Revised date: 2022-05-24

  Accepted date: 2022-06-01

  Online published: 2022-07-08

Supported by

National Natural Science Foundation of China(61903369)

Abstract

With the merits of long endurance, compact system configuration, rapid deployment, high cost-effectiveness and strong path planning capability, the intelligent stratospheric aerostat based on utilization of wind field is an important direction for the development of near space vehicles. As a typical intelligent stratospheric aerostat project using the wind field, Loon balloon is studied in this work. By reviewing and analyzing implementation and practical exploration of the project, the characteristics of the key technologies, including envelope material and structure, altitude control, energy and propulsion, safety control and recovery, wind field modeling, and autonomous control, have been analyzed. Based on the subject modeling method, simulation is carried out to analyze the overall parameters, super-heat and super-pressure properties, lift gas leakage, energy balance, trajectory planning. The technical characteristics of Loon balloon project are summarized, providing a reference for the design and application of the intelligent stratospheric aerostats based on utilization of wind field.

Cite this article

Xiaolong DENG , Xixiang YANG , Bingjie ZHU , Zhenyu MA , Zhongxi HOU . Simulation research and key technologies analysis of intelligent stratospheric aerostat Loon[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(8) : 127412 -127412 . DOI: 10.7527/S1000-6893.2022.27412

References

1 侯中喜, 杨希祥, 乔凯, 等. 平流层飞艇技术[M]. 北京: 科学出版社, 2019.
  HOU Z X, YANG X X, QIAO K, et al. Stratospheric airship technology[M]. Beijing: Science Press, 2019 (in Chinese).
2 YANG X W, YANG X X, DENG X L. Horizontal trajectory control of stratospheric airships in wind field using Q-learning algorithm[J]. Aerospace Science and Technology2020106: 106100.
3 ATHAR R U, MATHEWS T E, LAVIGNE J M, et al. Stratospheric C4ISR unmanned station (STRATACUS)[C]∥ AIAA Balloon Systems Conference. Reston: AIAA, 2017.
4 彭桂林, 万志强. 中国浮空器遥感遥测应用现状与展望[J]. 地球信息科学学报201921(4): 504-511.
  PENG G L, WAN Z Q. The present situation and prospect of aerostat applied to remote sensing and remote survey in China[J]. Journal of Geo-Information Science201921(4): 504-511 (in Chinese).
5 Khoury G A. Airship technology [M].2nd ed. Cambridge: Cambridge University Press, 2012.
6 杨希祥, 朱炳杰, 邓小龙, 等. Stratobus平流层飞艇项目研究进展与仿真分析[J]. 航空学报202142(9): 224579.
  YANG X X, ZHU B J, DENG X L, et al. Development status and simulation analysis of stratospheric airship Stratobus[J]. Acta Aeronautica et Astronautica Sinica202142(9): 224579 (in Chinese).
7 XU Y M, ZHU W Y, LI J, et al. Improvement of endurance performance for high-altitude solar-powered airships: A review[J]. Acta Astronautica2020167: 245-259.
8 杨燕初, 张航悦, 赵荣. 零压式高空气球球形设计与参数敏感性分析[J]. 国防科技大学学报201941(1): 58-64.
  YANG Y C, ZHANG H Y, ZHAO R. Shape design of zero pressure high altitude balloon and sensitivity analysis of key parameters[J]. Journal of National University of Defense Technology201941(1): 58-64 (in Chinese).
9 顾逸东. 气球科学观测100年[J]. 现代物理知识202032(2): 3-12, 2.
  GU Y D. Balloon scientific observation for 100 years[J]. Modern Physics202032(2): 3-12, 2 (in Chinese).
10 VARGAS A, DUBOURG V, RAIZONVILLE P, et al. The CNES 2015 - 2017 balloon program[C]∥ AIAA Balloon Systems Conference. Reston: AIAA, 2017.
11 FAIRBROTHER D A. 2017 NASA balloon program update[C]∥ AIAA Balloon Systems Conference. Reston: AIAA, 2017.
12 RONEY J A. Statistical wind analysis for near-space applications[J]. Journal of Atmospheric and Solar-Terrestrial Physics200769(13): 1485-1501.
13 YAJIMA N, IMAMURA T, IZUTSU N, et al. Introduction[M]∥ Scientific ballooning. New York: Springer, 2009: 1-14.
14 VANDERMEULEN I, GUAY M, MCLELLAN P J. Distributed control of high-altitude balloon formation by extremum-seeking control[J]. IEEE Transactions on Control Systems Technology201826(3): 857-873.
15 DU H F, LV M Y, LI J, et al. Station-keeping performance analysis for high altitude balloon with altitude control system[J]. Aerospace Science and Technology201992: 644-652.
16 邓小龙, 丛伟轩, 李魁, 等. 风场综合利用的新型平流层浮空器轨迹设计[J]. 宇航学报201940(7): 748-757.
  DENG X L, CONG W X, LI K, et al. Trajectory design of a novel stratospheric aerostat based on comprehensive utilization of wind fields[J]. Journal of Astronautics201940(7): 748-757 (in Chinese).
17 HALL J L, CAMERON J, PAUKEN M, et al. Altitude-controlled light gas balloons for Venus and titan exploration[C]∥ AIAA Aviation 2019 Forum. Reston: AIAA, 2019.
18 邓小龙, 杨希祥, 麻震宇, 等. 基于风场环境利用的平流层浮空器区域驻留关键问题研究进展[J]. 航空学报201940(8): 022941.
  DENG X L, YANG X X, MA Z Y, et al. Review of key technologies for station-keeping of stratospheric aerostats based on wind field utilization[J]. Acta Aeronautica et Astronautica Sinica201940(8): 022941 (in Chinese).
19 LIN K, ZHENG Z W, WU Z, et al. Path following of a stratospheric satellite by the aid of wind currents[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2019233(11): 3983-4003.
20 VOSS P B, RIDDLE E E, SMITH M S. Altitude control of long-duration balloons[J]. Journal of Aircraft200542(2): 478-482.
21 孙娜, 龙飞, 周雷, 等. 临近空间伞张式飞艇气囊结构原理性研究[J]. 宇航学报201233(3): 285-290.
  SUN N, LONG F, ZHOU L, et al. Envelope structure principle research on a space umbrella-like inflated airship in novel near[J]. Journal of Astronautics201233(3): 285-290 (in Chinese).
22 VOSS P B, HOLE L R, HELBLING E F, et al. Continuous in?situ soundings in the Arctic boundary layer: A new atmospheric measurement technique using controlled meteorological balloons[J]. Journal of Intelligent & Robotic Systems201370(1): 609-617.
23 JIANG Y, LV M Y, ZHU W Y, et al. A method of 3-D region controlling for scientific balloon long-endurance flight in the real wind[J]. Aerospace Science and Technology202097: 105618.
24 YODER C D, GEMMER T R, MAZZOLENI A P. Modelling and performance analysis of a tether and sail-based trajectory control system for extra-terrestrial scientific balloon missions[J]. Acta Astronautica2019160: 527-537.
25 RAMESH S S, MA J L, LIM K M, et al. Numerical evaluation of station-keeping strategies for stratospheric balloons[J]. Aerospace Science and Technology201880: 288-300.
26 JIANG Y, LV M Y, LI J. Station-keeping control design of double balloon system based on horizontal region constraints[J]. Aerospace Science and Technology2020100: 105792.
27 SAITO Y, AKITA D, FUKE H, et al. Properties of tandem balloons connected by extendable suspension wires[J]. Advances in Space Research201045(4): 482-489.
28 STERN S A, POYNTER J, MACCALLUM T. World view stratospheric ballooning capabilities, research, and commercial applications[C]∥ 2017 IEEE Aerospace Conference. Piscataway: IEEE Press, 2017.
29 BELLEMARE M G, CANDIDO S, CASTRO P S, et al. Autonomous navigation of stratospheric balloons using reinforcement learning[J]. Nature2020588(7836): 77-82.
30 SCHOEBERL M R, JENSEN E, PODGLAJEN A, et al. Gravity wave spectra in the lower stratosphere diagnosed from project loon balloon trajectories[J]. Journal of Geophysical Research Atmospheres: JGR2017122(16): 8517-8524.
31 FRIEDRICH L S, MCDONALD A J, BODEKER G E, et al. A comparison of Loon balloon observations and stratospheric reanalysis products[J]. Atmospheric Chemistry and Physics201717(2): 855-866.
32 VON EHRENFRIED M. Stratospheric balloons: Science and commerce at the edge of space[M]. Cham: Springer International Publishing, 2021.
33 李智斌, 黄宛宁, 张钊, 等. 2020年临近空间科技热点回眸[J]. 科技导报202139(1): 54-68.
  LI Z B, HUANG W N, ZHANG Z, et al. Summary of the hot spots of near space science and technology in 2020[J]. Science & Technology Review202139(1): 54-68 (in Chinese).
34 TRAN N K, HE X, ZLOTNIK D E, et al. Attitude sensing and control of a stratospheric ballon platform[C]∥ AIAA Balloon Systems (BAL) Conference. Reston: AIAA, 2013.
35 CANDIDO S, SINGH A, DELLE MONACHE L. Improving wind forecasts in the lower stratosphere by distilling an analog ensemble into a deep neural network[J]. Geophysical Research Letters202047(15): e2020GL089098.
36 张小达, 张鹏, 李小龙. 《标准大气与参考大气模型应用指南》介绍[J]. 航天标准化2010(3): 8-11.
  ZHANG X D, ZHANG P, LI X L. Introduction of application guide of standard atmosphere and reference atmosphere model[J]. Aerospace Standardization2010(3): 8-11 (in Chinese).
37 祝榕辰, 王生, 杨燕初, 等. 超压气球平飞阶段昼夜温度特性分析[J]. 计算机仿真202037(11): 54-59.
  ZHU R C, WANG S, YANG Y C, et al. Analysis of day-night thermal properties of super-pressure balloon during cruising flight[J]. Computer Simulation202037(11): 54-59 (in Chinese).
38 DAI Q M, CAO L, ZHANG G G, et al. Thermal performance analysis of solar array for solar powered stratospheric airship[J]. Applied Thermal Engineering2020171: 115077.
39 ZHU W Y, XU Y M, DU H F, et al. Thermal performance of high-altitude solar powered scientific balloon[J]. Renewable Energy2019135: 1078-1096.
40 NOLL J. Determination of lift gas leakage rate for a stratospheric airship hull[C]∥ 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston: AIAA, 2011.
41 YAO X F, LEI Y M, XIONG C, et al. Mechanics analysis on helium leakage of flexible composites[J]. Mechanics of Advanced Materials and Structures201219(8): 603-612.
42 ZHU W Y, XU Y M, LI J, et al. Performance analysis of rotatable energy system of high-altitude airships in real wind field[J]. Aerospace Science and Technology202098: 105689.
43 吴健发, 王宏伦, 黄宇. 大跨时空任务背景下的太阳能无人机任务规划技术研究进展[J]. 航空学报202041(3): 623414.
  WU J F, WANG H L, HUANG Y. Research development of solar powered UAV mission planning technology in large-scale time and space spans[J]. Acta Aeronautica et Astronautica Sinica202041(3): 623414 (in Chinese).
44 高显忠, 邓小龙, 王玉杰, 等. 临近空间太阳能飞机能量最优飞行航迹规划方法展望[J/OL]. 航空学报, (2022-06-13) [2022-07-01]. doi: 10.7527/S1000-6893.2022.27265 .
  GAO X Z, DENG X L, WANG Y J, et al. Research on general planning method for energy optimal flight path of solar-powered aircraft in near space[J/OL]. Acta Aeronautica et Astronautica Sinica, (2022-06-13) [2022-07-01]. doi: 10.7527/S1000-6893.2022.27265 (in Chinese).
45 刘福才, 赵阳, 杨亦强, 等. 高空气球太阳能电池标定用太阳跟踪控制技术[J]. 航空学报201435(11): 3137-3144.
  LIU F C, ZHAO Y, YANG Y Q, et al. Sun tracking technology for balloon flight solar cell calibration[J]. Acta Aeronautica et Astronautica Sinica201435(11): 3137-3144 (in Chinese).
46 徐国宁, 唐宇, 李兆杰, 等. 太阳电池高空气球标定关键技术研究[J]. 太阳能学报202142(10): 94-104.
  XU G N, TANG Y, LI Z J, et al. Research on key technology of solar cell high altitude flight balloon calibration[J]. Acta Energiae Solaris Sinica202142(10): 94-104 (in Chinese).
47 WAKEFIELD D, BOWN A. Non-linear analysis of the NASA super pressure balloons: Some detailed investigations of recent Antarctic flight balloons[C]∥ 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston: AIAA, 2011.
48 刘东旭, 樊彦斌, 马云鹏, 等. 氦气渗透对高空长航时浮空器驻空能力影响[J]. 宇航学报201031(11): 2477-2482.
  LIU D X, FAN Y B, MA Y P, et al. Effect of helium permeability on working endurance high altitude long duration LTA vehicle[J]. Journal of Astronautics201031(11): 2477-2482 (in Chinese).
49 刘乾石, 徐国宁, 李兆杰, 等. 长航时高空科学气球能量平衡分析与优化[J]. 太阳能学报202142(5): 276-285.
  LIU Q S, XU G N, LI Z J, et al. Energy balance analysis and optimization of long-tern high altitude scientific balloon[J]. Acta Energiae Solaris Sinica202142(5): 276-285 (in Chinese).
50 朱炳杰, 杨希祥, 宗建安, 等. 分布式混合电推进飞行器技术[J]. 航空学报202243(7): 025556.
  ZHU B J, YANG X X, ZONG J A, et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica202243(7): 025556 (in Chinese).
Outlines

/