ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Modular UAVs configuration method responded to task requirements
Received date: 2022-03-04
Revised date: 2022-03-16
Accepted date: 2022-06-23
Online published: 2022-07-08
Supported by
National Level Project
A configuration method for constructing modular Unmanned Aerial Vehicles (UAVs) is proposed to meet their mission requirements under cost constraints. Firstly, the set of mission requirements and module alternative elements are constructed. The correlation between mission requirements and module alternative elements is established. A demand satisfaction evaluation algorithm is built by selecting the overall costs of UAVs as the constraint condition. The particle swarm optimization algorithm is introduced to obtain the optimal configuration plan of the special-use UAV modules in the evaluation model. A numerical example is given to illustrate the difference between the proposed algorithm and the genetic algorithms. The results of the proposed method agree with those of the genetic algorithms. Then, a mission scenario is selected as an example, and the disposable UAVs are planned to be used in this mission. The modular configuration plans of three types of UAVs are constructed by the proposed method, restrained by the predetermined cost. The these plans show good agreements with the parameter configuration of disposable UAVs in previous studies. The rationality of the proposed configuration method is verified according to the calculation results of cost of each plan. Therefore, the modular UAVs configuration method can be used to achieve collaborative match of the performance of UAVs with the cost and task requirements of UAVs. Furthermore, single UAV cost and task cost of UAVs with different plans, which are obtained by the proposed configuration methods, are compared. The effects of configuration selections on the cost of single UAVs and swam UAVs are discussed. It is concluded that the proposed configuration algorithm can be used to control the cost of a single UAV and swarm UAVs.
Heye XIAO , Jianfeng YANG , Junqiang BAI , Xudong ZHANG , Lirong WU . Modular UAVs configuration method responded to task requirements[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(7) : 327100 -327100 . DOI: 10.7527/S1000-6893.2022.27100
1 | 焦士俊, 王冰切, 刘剑豪, 等. 国内外无人机蜂群研究现状综述[J]. 航天电子对抗, 2019, 35(1): 61-64. |
JIAO S J, WANG B Q, LIU J H, et al. Review of drone swarm research at home and abroad[J]. Aerospace Electronic Warfare, 2019, 35(1): 61-64 (in Chinese). | |
2 | 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报, 2020, 41(S1): 723738. |
JIA Y N, TIAN S Y, LI Q. Recent development of unmanned aerial vehicle swarms[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723738 (in Chinese). | |
3 | 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41(4): 023732. |
WANG X K, LIU Z H, CONG Y R, et al. Miniature fixed-wing UAV swarms: Review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 023732 (in Chinese). | |
4 | ZHOU F, JI Y J, JIAO R J. Affective and cognitive design for mass personalization: Status and prospect[J]. Journal of Intelligent Manufacturing, 2013, 24(5): 1047-1069. |
5 | BERRY C. Product architecting for personalization[J]. Journal of Manufacturing Systems, 2013, 32(3): 404-411. |
6 | KUMAR A. From mass customization to mass personalization: A strategic transformation[J]. International Journal of Flexible Manufacturing Systems, 2007, 19(4): 533-547. |
7 | 盛步云, 汪星刚, 萧筝, 等. 基于客户需求分析的模块化产品配置方法[J]. 计算机集成制造系统, 2017, 23(10): 2091-2100. |
SHENG B Y, WANG X G, XIAO Z, et al. Modular product configuration method based on customer requirement analysis[J]. Computer Integrated Manufacturing Systems, 2017, 23(10): 2091-2100 (in Chinese). | |
8 | 李浩, 陶飞, 文笑雨, 等. 面向大规模个性化的产品服务系统模块化设计[J]. 中国机械工程, 2018, 29(18): 2204-2214, 2249. |
LI H, TAO F, WEN X Y, et al. Modular design of product-service systems oriented to mass personalization[J]. China Mechanical Engineering, 2018, 29(18): 2204-2214, 2249 (in Chinese). | |
9 | 张英英, 夏一, 杜纲. 产品族配置与考虑升级的再制造设计主从关联优化[J]. 计算机集成制造系统, 2021, 27(7): 2053-2064. |
ZHANG Y Y, XIA Y, DU G. Leader-follower joint optimization of product family configuration and remanufacturing design considering upgrade[J]. Computer Integrated Manufacturing Systems, 2021, 27(7): 2053-2064 (in Chinese). | |
10 | 杜纲, 张铁斌, 缪琛璐, 等. 产品族模块化设计与平台配置的主从关联优化[J]. 计算机集成制造系统, 2018, 24(2): 455-463. |
DU G, ZHANG T B, MIAO C L, et al. Hierarchical joint optimization for modular design in product family coordinated with product platform configuration[J]. Computer Integrated Manufacturing Systems, 2018, 24(2): 455-463 (in Chinese). | |
11 | KOTARSKI D, PILJEK P, PRANJI\U 0107 M, et al. A modular multirotor unmanned aerial vehicle design approach for development of an engineering education platform[J]. Sensors (Basel, Switzerland), 2021, 21(8): 2737. |
12 | CHOWDHURY S, MALDONADO V, TONG W Y, et al. New modular product-platform-planning approach to design macroscale reconfigurable unmanned aerial vehicles[J]. Journal of Aircraft, 2016, 53(2): 309-322. |
13 | 杨延平, 张子健, 应培, 等. 集群组合式柔性无人机:创新、机遇及技术挑战[J]. 飞行力学, 2021, 39(2): 1-9, 15. |
YANG Y P, ZHANG Z J, YING P, et al. Flexible modular swarming UAV: Innovative, opportunities, and technical challenges[J]. Flight Dynamics, 2021, 39(2): 1-9, 15 (in Chinese). | |
14 | 罗利龙, 王立凯, 聂小华. 一种面向模块化可重构机翼的分步补偿优化方法[J]. 北京航空航天大学学报, 2019, 45(5): 930-935. |
LUO L L, WANG L K, NIE X H. A step-compensation optimization method for modular reconfigurable airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 930-935 (in Chinese). | |
15 | 李春鹏, 张铁军, 钱战森, 等. 多用途无人机模块化布局气动设计[J]. 航空学报, 2022, 43(7): 125411. |
LI C P, ZHANG T J, QIAN Z S, et al. Aerodynamic design of modular configuration for multi-mission unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 125411 (in Chinese). | |
16 | 华厚强. 模块化低空长航时无人机的设计与实现[J]. 电子测量技术, 2021, 44(9): 13-21. |
HUA H Q. Design and implementation of a modular low-altitude long-endurance UAV[J]. Electronic Measurement Technology, 2021, 44(9): 13-21 (in Chinese). | |
17 | 郏维强, 刘振宇, 刘达新, 等. 基于模糊关联的复杂产品模块化设计方法及其应用[J]. 机械工程学报, 2015, 51(5): 130-142. |
JIA W Q, LIU Z Y, LIU D X, et al. Modular design method and application for complex product based on fuzzy correlation analysis[J]. Journal of Mechanical Engineering, 2015, 51(5): 130-142 (in Chinese). | |
18 | 任彬, 张树有, 伊国栋. 基于模糊多属性决策的复杂产品配置方法[J]. 机械工程学报, 2010, 46(19): 108-116. |
REN B, ZHANG S Y, YI G D. Configuration design of complex products based on fuzzy multi-attribute decision-making[J]. Journal of Mechanical Engineering, 2010, 46(19): 108-116 (in Chinese). | |
19 | 黄柏雄, 周德俭, 袁海英. 基于改进加权和算法的模块化产品配置设计[J]. 机械设计与制造, 2016(4): 245-248. |
HUANG B X, ZHOU D J, YUAN H Y. Modular product configuration design based on the improved weighted and algorithm[J]. Machinery Design & Manufacture, 2016(4): 245-248 (in Chinese). | |
20 | 武浩远, 黎荣, 王建, 等. 客户需求驱动的两阶段配置设计[J]. 机械设计与制造, 2020(12): 216-220. |
WU H Y, LI R, WANG J, et al. Two-stage configuration design for customer requirement-driven[J]. Machinery Design & Manufacture, 2020(12): 216-220 (in Chinese). | |
21 | 杨建峰, 肖和业, 李亮, 等. 基于模糊聚类和专家评分机制的无人机多层次模块划分方法[J]. 系统工程与电子技术, 2022, 44(8): 2530-2539. |
YANG J F, XIAO H Y, LI L, et al. Multi-level module partition method of UAV based on fuzzy clustering and expert scoring mechanism[J]. Systems Engineering and Electronics, 2022, 44(8): 2530-2539 (in Chinese). | |
22 | 郭伟. 一款用于森林防火的小型无人机设计[D]. 南京: 南京航空航天大学, 2015. |
GUO W. Design of small unmanned aerial vehicle used in forest fire prevention[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese). | |
23 | 王相兵, 杜全斌, 周航, 等. 客户需求驱动的柔性产品平台模块化设计方法研究[J]. 机械设计, 2020, 37(9): 100-111. |
WANG X B, DU Q B, ZHOU H, et al. Research on modular design method of flexible product platform driven by customer demand[J]. Journal of Machine Design, 2020, 37(9): 100-111 (in Chinese). | |
24 | 史康云, 江屏, 闫会强, 等. 基于柔性产品平台的产品族开发[J]. 计算机集成制造系统, 2009, 15(10): 1880-1889. |
SHI K Y, JIANG P, YAN H Q, et al. Product family design based on flexible product platform[J]. Computer Integrated Manufacturing Systems, 2009, 15(10): 1880-1889 (in Chinese). | |
25 | TIAN D P, SHI Z Z. MPSO: Modified particle swarm optimization and its applications[J]. Swarm and Evolutionary Computation, 2018, 41: 49-68. |
26 | ZHANG X W. A modified particle swarm optimization for multimodal multi-objective optimization[J]. Engineering Applications of Artificial Intelligence, 2020, 95: 103905. |
27 | HOLLAND J H. Genetic algorithms[J]. Scientific American, 1992, 267(1): 66-72. |
28 | 王硕, 施冬梅, 陶贵明, 等. 单兵巡飞弹发展现状及关键技术分析[J]. 飞航导弹, 2020(3): 40-45, 65. |
WANG S, SHI D M, TAO G M, et al. Analysis of development status and key technologies of individual soldier patrol missile[J]. Aerodynamic Missile Journal, 2020(3): 40-45, 65 (in Chinese). | |
29 | 李增彦, 李小民. 单兵无人机发展现状及关键技术分析[J]. 飞航导弹, 2017(6): 23-29. |
LI Z Y, LI X M. Analysis of development status and key technologies of individual UAV[J]. Aerodynamic Missile Journal, 2017(6): 23-29 (in Chinese). |
/
〈 |
|
〉 |