Articles

Crashworthiness design of bio-inspired ring arrays for impact protection

  • XING Yun ,
  • ZHANG Qiao ,
  • YANG Xianfeng ,
  • LIU Hua ,
  • YANG Jialing
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China;
    2. Laboratory of Advanced Structural Impact and Biomimetic Mechanics, Beihang University, Beijing 100083, China

Received date: 2021-08-05

  Revised date: 2022-01-17

  Online published: 2022-07-07

Supported by

National Natural Science Foundation of China (12002027); Aeronautical Science Foundation of China (201941051001); China Postdoctoral Science Foundation (2021M700340)

Abstract

Inspired by the stiffness distribution of the beetle exoskeleton cuticle, a novel type bionic stiffness gradient ring array protective structure is proposed. This structure has excellent impact resistance, high stiffness programmability, and shape reconfigurability, and can be extended to a variety of size ratios and assembly frame types to meet more practical engineering impact protection requirements. Based on the numerical simulation technology, a finite element model of the biomimetic stiffness gradient ring protective system under impact loads is established. Combining experimental analysis and the theoretical model, we explore the propagation law of stress waves in the bionic stiffness gradient ring system and the impact mechanical behavior and protective capability of the bionic gradient ring system. The results reveal the ability of the concave stiffness gradient to significantly improve the protection performance of the bionic ring system. A complete parametric analysis is conducted to study the influence of the elastic modulus, radius and thickness distribution of the ring on the protective properties of the bionic stiffness gradient ring system, finally obtaining the optimal solution to the stiffness gradient programming.

Cite this article

XING Yun , ZHANG Qiao , YANG Xianfeng , LIU Hua , YANG Jialing . Crashworthiness design of bio-inspired ring arrays for impact protection[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(6) : 526194 -526194 . DOI: 10.7527/S1000-6893.2021.26194

References

[1] 宁建国, 宋卫东, 任会兰, 等. 冲击载荷作用下材料与结构的响应与防护[J]. 固体力学学报, 2010, 31(5):532-552. NING J G, SONG W D, REN H L, et al. Response and protection of materials and structures under impact loadings[J]. Chinese Journal of Solid Mechanics, 2010, 31(5):532-552(in Chinese).
[2] LU G, YU T X. Energy absorption of structures and materials[M]. Cambridge:Woodhead Publishing Limited, 2003.
[3] ALEXANDER R M. Principles of animal locomotion[M]. Princeton:Princeton University Press, 2003.
[4] YANG X F, MA J X, WEN D S, et al. Crashworthy design and energy absorption mechanisms for helicopter structures:A systematic literature review[J]. Progress in Aerospace Sciences, 2020, 114:100618.
[5] HU D Y, LUO M, YANG J L. Experimental study on crushing characteristics of brittle fibre/epoxy hybrid composite tubes[J]. International Journal of Crashworthiness, 2010, 15(4):401-412.
[6] WANG Y F, FENG J S, WU J H, et al. Effects of fiber orientation and wall thickness on energy absorption characteristics of carbon-reinforced composite tubes under different loading conditions[J]. Composite Structures, 2016, 153:356-368.
[7] XING B F, HU D Y, SUN Y X, et al. Effects of hinges and deployment angle on the energy absorption characteristics of a single cell in a deployable energy absorber[J]. Thin-Walled Structures, 2015, 94:107-119.
[8] LIU Y D, YU J L, ZHENG Z J, et al. A numerical study on the rate sensitivity of cellular metals[J]. International Journal of Solids and Structures, 2009, 46(22-23):3988-3998.
[9] LI Z B, YU J L, GUO L W. Deformation and energy absorption of aluminum foam-filled tubes subjected to oblique loading[J]. International Journal of Mechanical Sciences, 2012, 54(1):48-56.
[10] DHARMASENA K, QUEHEILLALT D, WADLEY H, et al. Dynamic response of a multilayer prismatic structure to impulsive loads incident from water[J]. International Journal of Impact Engineering, 2009, 36(4):632-643.
[11] ELNASRI I, ZHAO H. Impact perforation of sandwich panels with aluminum foam core:a numerical and analytical study[J]. International Journal of Impact Engineering, 2016, 96:50-60.
[12] XIANG J W, DU J X. Energy absorption characteristics of bio-inspired honeycomb structure under axial impact loading[J]. Materials Science and Engineering:A, 2017, 696:283-289.
[13] BELLAMKONDA R V. Marine inspiration[J]. Nature Materials, 2008, 7(5):347-348.
[14] MIRKHALAF M, ZHOU T, BARTHELAT F. Simultaneous improvements of strength and toughness in topologically interlocked ceramics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(37):9128-9133.
[15] ZHANG D K, LI C H, JIA D Z, et al. Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding[J]. Chinese Journal of Aeronautics, 2015, 28(2):570-581.
[16] YANG X F, MA J X, SHI Y L, et al. Crashworthiness investigation of the bio-inspired bi-directionally corrugated core sandwich panel under quasi-static crushing load[J]. Materials & Design, 2017, 135:275-290.
[17] YANG X F, SUN Y X, YANG J L, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure[J]. Thin-Walled Structures, 2018, 125:1-11.
[18] YANG X F, MA J X, SUN Y X, et al. Ripplecomb:a novel triangular tube reinforced corrugated honeycomb for energy absorption[J]. Composite Structures, 2018, 202:988-999.
[19] ZHANG Z Q, YU H, YANG J L, et al. How cat lands:insights into contribution of the forelimbs and hindlimbs to attenuating impact force[J]. Chinese Science Bulletin, 2014, 59(26):3325-3332.
[20] ZHANG Z Q, YANG J L, YU H. Effect of flexible back on energy absorption during landing in cats:A biomechanical investigation[J]. Journal of Bionic Engineering, 2014, 11(4):506-516.
[21] YU H, YANG J L, SUN Y X. Energy absorption of spider orb webs during prey capture:A mechanical analysis[J]. Journal of Bionic Engineering, 2015, 12(3):453-463.
[22] XING Y, YANG J L. Stiffness distribution in natural insect cuticle reveals an impact resistance strategy[J]. Journal of Biomechanics, 2020, 109:109952.
[23] TIMOSHENKO S P. Theory of elastic stability[M]. New York:McGraw-Hill, 1961.
[24] YANG X F, MA J X, SUN Y X, et al. An internally nested circular-elliptical tube system for energy absorption[J]. Thin-Walled Structures, 2019, 139:281-293.
[25] WANG H B, YANG J L, LIU H, et al. Internally nested circular tube system subjected to lateral impact loading[J]. Thin-Walled Structures, 2015, 91:72-81.
[26] SHIM V P W, TAY B Y, STRONGE W J. Dynamic crushing of strain-softening cellular structures-A one-dimensional analysis[J]. Journal of Engineering Materials and Technology, 1990, 112(4):398-405.
[27] GAO Z Y, YU T X, LU G. A study on type II structures. Part I:A modified one-dimensional mass-spring model[J]. International Journal of Impact Engineering, 2005, 31(7):895-910.
[28] GAO Z Y, YU T X, LU G. A study on type II structures. Part II:dynamic behavior of a chain of pre-bent plates[J]. International Journal of Impact Engineering, 2005, 31(7):911-926.
[29] JOHNSON K L. Contact mechanics[M]. Cambridge:Cambridge University Press, 1985.
[30] ABU JADAYIL W M, JABER N M. Numerical prediction of optimum hollowness and material of hollow rollers under combined loading[J]. Materials & Design, 2010, 31(3):1490-1496.
[31] SHIM V P W, LAN R, GUO Y B, et al. Elastic wave propagation in cellular systems-Experiments on single rings and ring systems[J]. International Journal of Impact Engineering, 2007, 34(10):1565-1584.
[32] JAFARPOUR M, ESHGHI S, DARVIZEH A, et al. Functional significance of graded properties of insect cuticle supported by an evolutionary analysis[J]. Journal of the Royal Society, Interface, 2020, 17(168):20200378.
[33] RAJABI H, JAFARPOUR M, DARVIZEH A, et al. Stiffness distribution in insect cuticle:a continuous or a discontinuous profile?[J]. Journal of the Royal Society, Interface, 2017, 14(132):20170310.
Outlines

/