Current development in advanced aero-engine and gas turbine technologies has increased the work temperature of hot components, constantly imposing higher requirements for the thermal insulation and service life of Thermal Barrier Coating system (TBCs). The introduction of periodic surface cracks with certain density into the ceramic coating to improve both thermal insulation and service life of TBCs is a new TBCs technology. However, the formation mechanism of surface cracks in the ceramic layer is still unclear. This study develops a shear-lag model considering thermal stresses in multilayer structures, and derives the analytical solutions of the stress and displacement fields in the ceramic layer before the formation of surface cracks. The evolution law of average stress, average strain energy density, and total strain energy in the plasma sprayed ceramic layer with coating thickness at different preheating temperatures is obtained. It's observed that the average stress and average strain energy density of coating layer remain the same before surface crack formation in deposition, while total strain energy keeps growing with the coating thickness, which means total strain energy is the key parameter associated with surface crack formation. Besides, it's easy to conclude that the higher preheating temperature is, the more easier surface crack formation is when the other deposition parameters are settled. The results illustrate the effect of preheating temperature on the formation of surface cracks in TBCs, providing theoretical guidance for the controllable preparation of advanced TBCs.
LI Dingjun
,
YANG Liuyu
,
SUN Fan
,
JIANG Peng
,
CHEN Yiwen
,
WANG Tiejun
. Effect of preheating temperature on formation of surface cracks in thermal barrier coating system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022
, 43(6)
: 526184
-526184
.
DOI: 10.7527/S1000-6893.2021.26184
[1] 王铁军,范学领. 热障涂层强度理论与检测技术[D].西安:西安交通大学出版社,2016. WANG T J, FAN X L. Strength theory and testing technology of thermal barrier coatings[D]. Xi'an:Xi'an Jiaotong University Press, 2016(in chinese).
[2] PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566):280-284.
[3] 王铁军, 范学领, 孙永乐, 等. 重型燃气轮机高温透平叶片热障涂层系统中的应力和裂纹问题研究进展[J]. 固体力学学报, 2016, 37(6):477-517. WANG T J, FAN X L, SUN Y L, et al. The stresses and cracks in thermal barrier coating system:A review[J]. Chinese Journal of Solid Mechanics, 2016, 37(6):477-517(in Chinese).
[4] CLARKE D R, OECHSNER M, PADTURE N P. Thermal-barrier coatings for more efficient gas-turbine engines[J]. MRS Bulletin, 2012, 37(10):891-898.
[5] MUKTINUTALAPATI N R. Materials for gas turbines-An overview[M]//Benini E. Advances in Gas Turbine Technology. Croatia:InTech, 2011:293-314.
[6] SAMPATH S, JIANG X Y, MATEJICEK J, et al. Substrate temperature effects on splat formation, microstructure development and properties of plasma sprayed coatings Part I:Case study for partially stabilized zirconia[J]. Materials Science and Engineering:A, 1999, 272(1):181-188.
[7] FAN X L, XU R, ZHANG W X, et al. Effect of periodic surface cracks on the interfacial fracture of thermal barrier coating system[J]. Applied Surface Science, 2012, 258(24):9816-9823.
[8] KARGER M, VAВEN R, STÖVER D. Atmospheric plasma sprayed thermal barrier coatings with high segmentation crack densities:Spraying process, microstructure and thermal cycling behavior[J]. Surface and Coatings Technology, 2011, 206(1):16-23.
[9] SAMPATH S, SCHULZ U, JARLIGO M O, et al. Processing science of advanced thermal-barrier systems[J]. MRS Bulletin, 2012, 37(10):903-910.
[10] TAYLOR T A. Thermal barrier coating for substrates and process for producing it:US5073433A[P]. 1991-12-17.
[11] GRAY D M, LAU Y C, JOHNSON C A, et al. Thermal barrier coatings having an improved columnar microstructure:US06306517B1[P]. 2001-10-23.
[12] XING Y Z, LI Y, LI C J, et al. Influence of substrate temperature on microcracks formation in plasma-sprayed yttria-stabilized zirconia splats[J]. Key Engineering Materials, 2008, 373-374:69-72.
[13] JIANG P, FAN X L, SUN Y L, et al. Bending-driven failure mechanism and modelling of double-ceramic-layer thermal barrier coating system[J]. International Journal of Solids and Structures, 2018, 130-131:11-20.
[14] MCGUIGAN A P, BRIGGS G A D, BURLAKOV V M, et al. An elastic-plastic shear lag model for fracture of layered coatings[J]. Thin Solid Films, 2003, 424(2):219-223.
[15] SHINDE S V, GILDERSLEEVE V E J, JOHNSON C A, et al. Segmentation crack formation dynamics during air plasma spraying of zirconia[J]. Acta Materialia, 2020, 183:196-206.
[16] BIAŁAS M. Finite element analysis of stress distribution in thermal barrier coatings[J]. Surface and Coatings Technology, 2008, 202(24):6002-6010.
[17] SFAR K, AKTAA J, MUNZ D. Numerical investigation of residual stress fields and crack behavior in TBC systems[J]. Materials Science and Engineering:A, 2002, 333(1-2):351-360.
[18] WIDJAJA S, LIMARGA A M, YIP T H. Modeling of residual stresses in a plasma-sprayed zirconia/alumina functionally graded-thermal barrier coating[J]. Thin Solid Films, 2003, 434(1-2):216-227.
[19] SU L C, ZHANG W X, SUN Y L, et al. Effect of TGO creep on top-coat cracking induced by cyclic displacement instability in a thermal barrier coating system[J]. Surface and Coatings Technology, 2014, 254:410-417.
[20] GUO H B, VAВEN R, STÖVER D. Atmospheric plasma sprayed thick thermal barrier coatings with high segmentation crack density[J]. Surface and Coatings Technology, 2004, 186(3):353-363.
[21] AHMANIEMI S, VUORISTO P, MÄNTYLÄ T, et al. Thermal cycling resistance of modified thick thermal barrier coatings[J]. Surface and Coatings Technology, 2005, 190(2-3):378-387.