ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Review of numerical simulation on complex separated flow of iced airfoil
Received date: 2022-03-29
Revised date: 2022-04-18
Accepted date: 2022-06-13
Online published: 2022-06-27
Supported by
National Natural Science Foundation of China(11972304);Aeronautical Science Foundation of China(2019ZA053005);National Science and Technology Project
The complex separation flow caused by icing will lead to the deterioration of aerodynamic performance, especially stall behavior. The accurate prediction of aerodynamic performance and the thorough investigation of mechanism under icing condition depend on the precise solution of the separated flow field. With the improvement of computational fluid dynamics methods especially turbulence simulation, the numerical simulation can reflect the physical nature of separated flow as well as provide precise and complete results. In terms of the application of three typical turbulence simulation methods, Reynolds Averaged Navier-Stokes (RANS), Large Eddy Simulation (LES) and RANS/LES, a comprehensive review of recent research progress in numerical simulation on the prediction of stall behavior and characterization of separated flow are presented. Furthermore, the summary and outlook of the development tendency are also proposed in the aspects of high-fidelity ice shapes, new type turbulence simulation methods, deep analysis of unsteady features and real time coupling analysis of separated flow.
Binbin ZHAO , Heng ZHANG , Jie LI . Review of numerical simulation on complex separated flow of iced airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(1) : 627211 -627211 . DOI: 10.7527/S1000-6893.2022.27211
1 | GENT R W, DART N P, CANSDALE J T. Aircraft icing[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2000, 358(1776): 2873-2911. |
2 | CEBECI T, KAFYEKE F. Aircraft icing[J]. Annual Review of Fluid Mechanics, 2003, 35: 11-21. |
3 | BRAGG M B, BROEREN A P, BLUMENTHAL L A. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5): 323-362. |
4 | LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8): 669-767. |
5 | STEBBINS S J, LOTH E, BROEREN A P, et al. Review of computational methods for aerodynamic analysis of iced lifting surfaces[J]. Progress in Aerospace Sciences, 2019, 111: 100583. |
6 | SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
7 | JOHNSON D A, KING L S. A mathematically simple turbulence closure model for attached and separated turbulent boundary layers[J]. AIAA Journal, 1985, 23(11): 1684-1692. |
8 | WILCOX D C. Reassessment of the scale-determining equation for advanced turbulence models[J]. AIAA Journal, 1988, 26(11): 1299-1310. |
9 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
10 | POTAPCZUK M, GERHART P. Progress in development of a Navier-Stokes solver for evaluation of iced airfoil performance[C]∥23rd Aerospace Sciences Meeting. Reston: AIAA, 1985. |
11 | KWON O, SANKAR L. Numerical study of the effects of icing on finite wing aerodynamics[C]∥28th Aerospace Sciences Meeting. Reston: AIAA, 1990. |
12 | KWON O, SANKAR L. Numerical investigation of performance degradation of wings and rotors due to icing[C]∥30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
13 | SHIM J, CHUNG J, LE K. A computational investigation of ice geometry effects on airfoil performances[C]∥39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. |
14 | CHI X, LI Y, ADDY H, et al. A comparative study using CFD to predict iced airfoil aerodynamics[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
15 | CHI X, ZHU B, SHIH T, et al. CFD analysis of the aerodynamics of a business-jet airfoil with leading-edge ice accretion[C]∥42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004. |
16 | PAN J P, LOTH E. Reynolds-averaged Navier-Stokes simulations of airfoils and wings with ice shapes[J]. Journal of Aircraft, 2004, 41(4): 879-891. |
17 | MARONGIU C, VITAGLIANO P L, ZANAZZI G, et al. Aerodynamic analysis of an iced airfoil at medium/high Reynolds number[J]. AIAA Journal, 2008, 46(10): 2469-2478. |
18 | JUN G, OLIDEN D, POTAPCZUK M G, et al. Computational aerodynamic analysis of three-dimensional ice shapes on a NACA 23012 airfoil[C]∥6th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2014. |
19 | MIRZAEI M, ARDEKANI M A, DOOSTTALAB M. Numerical and experimental study of flow field characteristics of an iced airfoil[J]. Aerospace Science and Technology, 2009, 13(6): 267-276. |
20 | 陈科, 曹义华, 安克文, 等. 应用混合网格分析复杂积冰翼型气动性能[J]. 航空学报, 2007, 28(S1): 87-91. |
CHEN K, CAO Y H, AN K W, et al. Application of hybrid grid to analyzing complex iced airfoil aerodynamic performance[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(S1): 87-91 (in Chinese). | |
21 | 陈科, 曹义华, 安克文, 等. 复杂积冰翼型气动性能分析[J]. 航空动力学报, 2007, 22(6): 986-990. |
CHEN K, CAO Y H, AN K W, et al. Analysis on aerodynamic performance of complex iced airfoils[J]. Journal of Aerospace Power, 2007, 22(6): 986-990 (in Chinese). | |
22 | 李焱鑫, 张辰, 刘洪, 等. 大粒径过冷水溢流结冰的翼型气动影响分析[J]. 空气动力学学报, 2014, 32(3): 376-382. |
LI Y X, ZHANG C, LIU H, et al. Aerodynamic effects of supercooled large droplet runback ice on airfoils[J]. Acta Aerodynamica Sinica, 2014, 32(3): 376-382 (in Chinese). | |
23 | LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2): 269-289. |
24 | LI H R, ZHANG Y F, CHEN H X. Numerical simulation of iced wing using separating shear layer fixed turbulence models[J]. AIAA Journal, 2021, 59(9): 3667-3681. |
25 | LI H R, ZHANG Y F, CHEN H X. Aerodynamic prediction of iced airfoils based on modified three-equation turbulence model[J]. AIAA Journal, 2020, 58(9): 3863-3876. |
26 | 黄冉冉, 李栋, 刘藤, 等. 冰形表面粗糙度对翼型的失速特性影响分析[J]. 空气动力学学报, 2021, 39(1): 59-65. |
HUANG R R, LI D, LIU T, et al. The effect of ice accretion roughness on airfoil stall characteristics[J]. Acta Aerodynamica Sinica, 2021, 39(1): 59-65 (in Chinese). | |
27 | 李浩然, 段玉宇, 张宇飞, 等. 结冰模拟软件AERO-ICE中的关键数值方法[J]. 航空学报, 2021, 42(S1): 726371. |
LI H R, DUAN Y Y, ZHANG Y F, et al. Numerical method of ice-accretion software AERO-ICE[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726371 (in Chinese). | |
28 | BROWN C M, KUNZ R, KINZEL M, et al. RANS and LES simulation of airfoil ice accretion aerodynamics: AIAA-2014-2203[R]. Reston: AIAA, 2014. |
29 | GRINSTEIN F F, MARGOLIN L G, RIDER W. Implicit Large Eddy Simulation: Computing turbulent fluid dynamics[M]. Cambridge: Cambridge University Press, 2007. |
30 | HUNT J, WRAY A, MOIN P. Proceedings of the 1988 summer program[R]. Stanford: Center for Turbulence Research, Stanford University, 1988. |
31 | CHUNG D, PULLIN D I. Large-eddy simulation and wall modelling of turbulent channel flow[J]. Journal of Fluid Mechanics, 2009, 631: 281-309. |
32 | XIAO M C, ZHANG Y F, ZHOU F. Numerical study of iced airfoils with horn features using large-eddy simulation[J]. Journal of Aircraft, 2019, 56(1): 94-107. |
33 | SPALART P R. Young-person’s guide to detached-eddy simulation grids: NASA CR-2001-211032[R]. Washington, D.C.: NASA, 2001. |
34 | SPALART P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21(3): 252-263. |
35 | SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41: 181-202. |
36 | SPALART P R, JOU W, STRELETS M, et al. Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach[M]. Los Angles: Greyden Press, 1997. |
37 | SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3): 181. |
38 | MENTER F R, KUNTZ M. Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles[M]∥The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains. Berlin, Heidelberg: Springer, 2004: 339-352. |
39 | SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649. |
40 | PAN J P, LOTH E. Detached eddy simulations for airfoil with ice shapes[C]∥42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004. |
41 | PAN J P, LOTH E. Detached eddy simulations for iced airfoils[J]. Journal of Aircraft, 2005, 42(6): 1452-1461. |
42 | CHOO Y, THOMPSON D, MOGILI P. Detached-eddy simulations of separated flow around wings with ice accretions: Year one report: NASA CR-2004-213379[R]. Washington, D.C.: NASA, 2004. |
43 | MOGILI P, THOMPSON D, CHOO Y, et al. RANS and DES computations for a wing with ice accretion[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
44 | LORENZO A, VALERO E, DE-PABLO V. DES/DDES post-stall study with iced airfoil[C]∥49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011. |
45 | LAKSHMIPATHY S, TOGITI V. Assessment of alternative formulations for the specific-dissipation rate in RANS and variable-resolution turbulence models[C]∥ 20th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2011. |
46 | GIRIMAJI S S. Partially-averaged Navier-Stokes model for turbulence: A Reynolds-averaged Navier-Stokes to direct numerical simulation bridging method[J]. Journal of Applied Mechanics, 2006, 73(3): 413-421. |
47 | ALAM M, WALTERS K, THOMPSON D. Simulations of separated flow around an airfoil with ice shape using hybrid RANS/LES models[C]∥ 29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011. |
48 | ALAM M F, THOMPSON D S, WALTERS D K. Hybrid Reynolds-averaged Navier-Stokes/large-eddy simulation models for flow around an iced wing[J]. Journal of Aircraft, 2015, 52(1): 244-256. |
49 | MOLINA E S, SILVA D M, BROEREN A P, et al. Application of DDES to iced airfoil in Stanford University Unstructured (SU2)[M]∥Progress in Hybrid RANS-LES Modelling. Cham: Springer, 2020: 283-293. |
50 | XIAO Z X, LIU J, HUANG J B, et al. Numerical dissipation effects on massive separation around tandem cylinders[J]. AIAA Journal, 2012, 50(5): 1119-1136. |
51 | XIAO Z X, LIU J, LUO K Y, et al. Investigation of flows around a rudimentary landing gear with advanced detached-eddy-simulation approaches[J]. AIAA Journal, 2013, 51(1): 107-125. |
52 | XIAO Z X, LUO K Y. Improved delayed detached-eddy simulation of massive separation around triple cylinders[J]. Acta Mechanica Sinica, 2015, 31(6): 799-816. |
53 | 张恒, 李杰, 龚志斌. 基于IDDES方法的翼型结冰失速分离流动数值模拟[J]. 空气动力学学报, 2016, 34(3): 283-288. |
ZHANG H, LI J, GONG Z B. Numerical simulation of the stall separated flow around an iced airfoil based on IDDES[J]. Acta Aerodynamica Sinica, 2016, 34(3): 283-288 (in Chinese). | |
54 | ZHANG H, LI J, JIANG Y X, et al. Analysis of the expanding process of turbulent separation bubble on an iced airfoil under stall conditions[J]. Aerospace Science and Technology, 2021, 114: 106755. |
55 | HU S F, ZHANG C, LIU H, et al. IDDES simulation of flow separation on an 3-D NACA23012 airfoil with spanwise ridge ice[C]∥2018 Atmospheric and Space Environments Conference. Reston: AIAA, 2018. |
56 | HU S F, ZHANG C, LIU H, et al. Study on vortex shedding mode on the wake of horn/ridge ice contamination under high-Reynolds conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(13): 5045-5056. |
57 | BAO S Y, SHI Y J, SONG W B. Numerical study of iced airfoil aeroacoustics using IDDES[C]∥AIAA Aviation 2020 Forum. Reston: AIAA, 2020. |
58 | 谭雪, 张辰, 徐文浩, 等. 近失速形态下冰脊分离非定常流的IDDES和模态分析[J]. 上海交通大学学报, 2021, 55(11): 1333-1342. |
TAN X, ZHANG C, XU W H, et al. Unsteadiness and modal analysis of ridge ice-induced separation in post-stall conditions via IDDES[J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1333-1342 (in Chinese). | |
59 | ZHANG C, TAN X, XU W H, et al. High-fidelity modeling of turbulent shear flow downstream of a 3-D airfoil with spanwise ice contamination leading stall[J]. Computers & Fluids, 2022, 240: 105423. |
60 | SHUR M L, SPALART P R, STRELETS M K, et al. An enhanced version of DES with rapid transition from RANS to LES in separated flows[J]. Flow, Turbulence and Combustion, 2015, 95(4): 709-737. |
61 | XIAO M C, ZHANG Y F. Improved prediction of flow around airfoil accreted with horn or ridge ice[J]. AIAA Journal, 2021, 59(6): 2318-2327. |
62 | XIAO M C, ZHANG Y F. Assessment of the SST-IDDES with a shear-layer-adapted subgrid length scale for attached and separated flows[J]. International Journal of Heat and Fluid Flow, 2020, 85: 108653. |
63 | DECK S. Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation[J]. Theoretical and Computational Fluid Dynamics, 2012, 26(6): 523-550. |
64 | DUCLERCQ M, BRUNET V, MOENS F. Physical analysis of the separated flow around an iced airfoil based on ZDES simulations[C]∥4th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2012. |
65 | ZHANG Y, HABASHI W G, KHURRAM R A. Zonal detached-eddy simulation of turbulent unsteady flow over iced airfoils[J]. Journal of Aircraft, 2016, 53(1): 168-181. |
66 | COSTES M, MOENS F. Advanced numerical prediction of iced airfoil aerodynamics[J]. Aerospace Science and Technology, 2019, 91: 186-207. |
67 | COSTES M, MOENS F, BRUNET V. Prediction of iced airfoil aerodynamic characteristics[C]∥54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
68 | BHUSHAN S, WALTERS D K. A dynamic hybrid Reynolds-averaged Navier Stokes-Large eddy simulation modeling framework[J]. Physics of Fluids, 2012, 24(1): 015103. |
69 | WALTERS D K, BHUSHAN S, ALAM M F, et al. Investigation of a dynamic hybrid RANS/LES modelling methodology for finite-volume CFD simulations[J]. Flow, Turbulence and Combustion, 2013, 91(3): 643-667. |
70 | GIRIMAJI S S, SRINIVASAN R, JEONG E. PANS turbulence model for seamless transition between RANS and LES: Fixed-point analysis and preliminary results[C]∥Proceedings of ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. New York: ASME, 2003: 1901-1909. |
71 | MENTER F, EGOROV Y. A scale adaptive simulation model using two-equation models[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
72 | CHEN S Y, XIA Z H, PEI S Y, et al. Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows[J]. Journal of Fluid Mechanics, 2012, 703: 1-28. |
73 | XIAO M C, ZHANG Y F, CHEN H X. Numerical study of an iced airfoil using window-embedded RANS/LES hybrid method[C]∥9th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2017. |
74 | ANSELL P J, BRAGG M B. Measurement of unsteady flow reattachment on an airfoil with an ice shape[J]. AIAA Journal, 2014, 52(3): 656-659. |
75 | ANSELL P J, BRAGG M B. Unsteady modes in flowfield about airfoil with horn-ice shape[J]. Journal of Aircraft, 2016, 53(2): 475-486. |
/
〈 |
|
〉 |