Articles

Integrated attitude and vibration control of space large antenna with truss

  • Xinyu HOU ,
  • Fan ZHANG ,
  • Panfeng HUANG ,
  • Xiaofei MA ,
  • Jialong ZHU ,
  • Yang LI
Expand
  • 1.College of Astronautics,Northwestern Polytechnical University,Xi’an  710072,China
    2.China Academy of Space Technology (Xi’an),Xi’an  710100,China
    3.College of Mechatronics Engineering,Harbin Institute of Technology,Harbin  150001,China
E-mail: fzhang@nwpu.edu.cn

Received date: 2022-05-11

  Revised date: 2022-06-01

  Accepted date: 2022-06-16

  Online published: 2022-06-24

Supported by

National Natural Science Foundation of China(62173275)

Abstract

Large truss structures are widely used in space applications with the growth demand of space missions, which makes the rigid-flexible coupling characteristics of the system increasingly enhanced. Therefore, the flexible vibration coupled with attitude is easy to occur in orbit. To realize the integrated control of the attitude and vibration of space large antenna with truss, the dynamics model is improved based on the Lagrange principle. In the equation, the coupling relationship between vibration of flexible structure and system attitude is discussed fundamentally. Then, a fixed-time global sliding mode controller is proposed to achieve the goal of the integrated control. The simulation results show that the proposed control algorithm can not only suppress the vibration response amplitude of the flexible structure in a short time, but also ensure the stability of the system attitude. The algorithm has good robustness and fixed time convergence characteristics.

Cite this article

Xinyu HOU , Fan ZHANG , Panfeng HUANG , Xiaofei MA , Jialong ZHU , Yang LI . Integrated attitude and vibration control of space large antenna with truss[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(S1) : 727552 -727552 . DOI: 10.7527/S1000-6893.2022.27552

References

1 齐朝晖, 常进官, 王刚. 周边桁架式可展开天线展开分析与控制[J]. 宇航学报201435(1): 61-68.
  QI Z H, CHANG J G, WANG G. Analysis and control of deployment process for hoop truss deployable antenna[J]. Journal of Astronautics201435(1): 61-68 (in Chinese).
2 孙延超, 李传江, 常雅杰, 等. 空间智能桁架的有限时间振动抑制控制[J]. 哈尔滨工业大学学报201850(10): 27-34.
  SUN Y C, LI C J, CHANG Y J, et al. Finite-time vibration control of space intelligent truss[J]. Journal of Harbin Institute of Technology201850(10): 27-34 (in Chinese).
3 WU Y, CAO D Q, LIU M, et al. Natural characteristic and vibration analysis of nonlinear articulated multi-beam ring structure for modeling ring truss antenna under base excitation[J]. Applied Mathematical Modelling2022108: 787-806.
4 FAN L M, HUANG H, SUN L, et al. Robust attitude control for a rigid-flexible-rigid microsatellite with multiple uncertainties and input saturations[J]. Aerospace Science and Technology201995: 105443.
5 LIU M, CAO D Q, ZHU D F. Coupled vibration analysis for equivalent dynamic model of the space antenna truss[J]. Applied Mathematical Modelling202189: 285-298.
6 AZIMI M, FARZANEH JOUBANEH E. Dynamic modeling and vibration control of a coupled rigid-flexible high-order structural system: A comparative study[J]. Aerospace Science and Technology2020102: 105875.
7 和兴锁, 邓峰岩, 张烈霞, 等. 大型空间刚柔耦合组合体的动力学建模[J]. 机械科学与技术200423(5): 543-545, 607.
  HE X S, DENG F Y, ZHANG L X, et al. Dynamics modeling of large coupled rigid-flexible space platform system[J]. Mechanical Science and Technology200423(5): 543-545, 607 (in Chinese).
8 LU S L, QI X Z, HU Y, et al. Deployment dynamics of large space antenna and supporting arms[J]. IEEE Access20197: 69922-69935.
9 袁秋帆, 王超磊, 齐乃明, 等. 单翼大挠性航天器全局模态动力学建模及试验[J]. 宇航学报201940(4): 369-377.
  YUAN Q F, WANG C L, QI N M, et al. Global dynamic modeling for a spacecraft with single large flexible structure and experimental study[J]. Journal of Astronautics201940(4): 369-377 (in Chinese).
10 PAN K Q, LIU J Y. Investigation on the choice of boundary conditions and shape functions for flexible multi-body system[J]. Acta Mechanica Sinica201228(1): 180-189.
11 MU R N, TAN S J, WU Z G, et al. Coupling dynamics of super large space structures in the presence of environmental disturbances[J]. Acta Astronautica2018148: 385-395.
12 LIU Y L, WU S N, ZHANG K M, et al. Parametrical excitation model for rigid-flexible coupling system of solar power satellite[J]. Journal of Guidance, Control, and Dynamics201740(10): 2674-2681.
13 于亚男, 胡存明, 贺从园, 等. 基于高阶滑模变结构的挠性航天器大角度姿态机动控制研究[J]. 上海航天201633(3): 48-54.
  YU Y N, HU C M, HE C Y, et al. Variable structure control study for large-angle attitude maneuver of flexible spacecraft based on high order sliding mode[J]. Aerospace Shanghai201633(3): 48-54 (in Chinese).
14 WANG E M, WU S N, XUN G B, et al. Active vibration suppression for large space structure assembly: a distributed adaptive model predictive control approach[J]. Journal of Vibration and Control202127(3-4): 365-377.
15 常雅杰. 智能桁架卫星的振动抑制与姿态控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
  CHANG Y J. Vibration suppression and attitude control methods for intelligent truss satellite[D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese).
16 苏晨. 大型空间桁架结构在轨构建动力学建模与振动控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
  SU C. Research on dynamic modeling and vibration control of large space truss structure on-orbit construction[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese).
17 MIAO Y, HWANG I, LIU M, et al. Adaptive fast nonsingular terminal sliding mode control for attitude tracking of flexible spacecraft with rotating appendage[J]. Aerospace Science and Technology201993: 105312.
18 苗双全, 丛炳龙, 刘向东. 基于输入成形的挠性航天器自适应滑模控制[J]. 航空学报201334(8): 1906-1914.
  MIAO S Q, CONG B L, LIU X D. Adaptive sliding mode control of flexible spacecraft on input shaping[J]. Acta Aeronautica et Astronautica Sinica201334(8): 1906-1914 (in Chinese).
19 ELISHAKOFF I, BOUTUR D. Rigorous implementation of the Galerkin method for uniform and stepped columns[J]. AIAA Journal202058(5): 2261-2268.
20 MEIROVITCH L. Fundamentals of vibrations[M]. Chicago: Waveland Press, Inc, 2002.
21 ZUO Z Y, HAN Q L, NING B D. Fixed-time cooperative control for high-order multi-agent systems[M]∥ Fixed-Time Cooperative Control of Multi-Agent Systems. Cham: Springer, 2019: 69-83.
22 JIANG B Y, HU Q L, FRISWELL M I. Fixed-time attitude control for rigid spacecraft with actuator saturation and faults[J]. IEEE Transactions on Control Systems Technology201624(5): 1892-1898.
23 ZUO Z Y. Nonsingular fixed-time consensus tracking for second-order multi-agent networks[J]. Automatica201554: 305-309.
24 MOULAY E, LéCHAPPé V, BERNUAU E, et al. Robust fixed-time stability: application to sliding-mode control[J]. IEEE Transactions on Automatic Control202267(2): 1061-1066.
Outlines

/