Material Engineering and Mechanical Manufacturing

Thermal deformation behavior of S280 ultra-high strength stainless steel based on response surface methodology

  • Kaiming ZHANG ,
  • Kelu WANG ,
  • Shiqiang LU ,
  • Mutong LIU ,
  • Ping ZHONG ,
  • Ye TIAN
Expand
  • 1.School of Aerospace Manufacturing Engineering,Nanchang Hangkong University,Nanchang 330063,China
    2.Institute of Steel and Rare Precious Metals,AECC Beijing Institute of Aeronautical Materials,Beijing 100095,China
E-mail: wangkelu@126.com

Received date: 2022-04-19

  Revised date: 2022-05-12

  Accepted date: 2022-06-14

  Online published: 2022-06-17

Abstract

The thermal deformation behavior of S280 ultra-high strength stainless steel was studied at deformation temperatures of 850–1 150 ℃ and strain rates of 0.001–1 s-1. The isothermal constant strain rate compression experiments were carried out using the Thermecmaster-Z thermal simulation tester. The flow behavior characteristics of the stainless steel was analyzed. The thermal deformation activation energy parameter and the strain rate sensitivity exponent were calculated. A response surface model was established with deformation temperature, strain rate, and strain as the input variables and thermal deformation activation energy parameter and strain rate sensitivity exponent as the response targets. The thermal processing process parameters were optimized by multi-objective visualization. The results show that the S280 ultra-high strength stainless steel is a positive strain rate and negative temperature sensitive material, and its flow stress decreases with decreasing strain rate and increasing deformation temperature. The established response surface model has high accuracy and can intuitively reflect the relationship between material parameters and thermal deformation conditions, and can be used for prediction of material-related parameters. Through multi-objective visual optimization and microstructure verification, the optimal thermal processing process parameters for S280 ultra-high strength stainless steel were obtained to be in the range of deformation temperature of 1 085–1 150 ℃ and strain rate of 0.001–0.003 s-1.

Cite this article

Kaiming ZHANG , Kelu WANG , Shiqiang LU , Mutong LIU , Ping ZHONG , Ye TIAN . Thermal deformation behavior of S280 ultra-high strength stainless steel based on response surface methodology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(8) : 427293 -427293 . DOI: 10.7527/S1000-6893.2022.27293

References

1 钟平, 张业勤, 钟锦岩, 等. 一种新型结构材料S280[J]. 科技导报201533(11): 59-62.
  ZHONG P, ZHANG Y Q, ZHONG J Y, et al. A new type of structural material S280[J]. Science and Technology Review201533(11): 59-62 (in Chinese).
2 刘振宝, 梁剑雄, 苏杰, 等. 高强度不锈钢的研究及发展现状[J]. 金属学报202056(4): 549-557.
  LIU Z B, LIANG J X, SU J, et al. Research and application progress in ultra-high strength stainless steel[J]. Acta Metallurgica Sinica202056(4): 549-557 (in Chinese).
3 张睦林, 朱立群, 刘慧丛, 等. 300M超高强度钢在模拟积水环境中的腐蚀行为[J]. 航空学报201334(4): 954-962.
  ZHANG M L, ZHU L Q, LIU H C, et al. Corrosion behavior of 300M ultra-high strength steel in simulated gap water environment[J]. Acta Aeronautica et Astronautica Sinica201334(4): 954-962 (in Chinese).
4 钟锦岩, 张业勤, 韩雅芳. S280新型超高强不锈钢中一种新析出相研究[J]. 稀有金属材料与工程201948(1): 116-122.
  ZHONG J Y, ZHANG Y Q, HAN Y F. New phase precipitated from the new type of ultrahigh strength stainless steel S280[J]. Rare Metal Materials and Engineering201948(1): 116-122 (in Chinese).
5 ZHONG J Y, CHEN Z, YANG S L, et al. Effect of solution and aging temperatures on microstructure and mechanical properties of 10Cr13Co13Mo5Ni3W1VE (S280) steel[J]. Micromachines202112(5): 566-579.
6 詹中伟, 孙志华, 汤智慧. 化学钝化对S280超高强度不锈钢综合性能的影响[J]. 腐蚀与防护201536(8): 742-747, 758.
  ZHAN Z W, SUN Z H, TANG Z H. Effect of chemical passivation on properities of S280 ultra high-strength stainless steel[J]. Corrosion & Protection201536(8): 742-747, 758 (in Chinese).
7 田帅, 刘培根. 喷丸强化对S280新型超高强度不锈钢疲劳性能的影响[J]. 材料保护201346(7): 16-18, 6.
  TIAN S, LIU P G. Influence of shot peening on fatigue behavior of S280 ultrahigh strength stainless steel[J]. Materials Protection201346(7): 16-18, 6 (in Chinese).
8 吴道祥, 周杰, 马鹏程, 等. 基于响应面法的7050铝合金筋板类锻件热模锻成形工艺优化[J]. 中南大学学报(自然科学版)201748(3): 601-607.
  WU D X, ZHOU J, MA P C, et al. Optimization of hot die forging process parameters of 7050 aluminum alloy rib-web type components based on response surface method[J]. Journal of Central South University (Science and Technology)201748(3): 601-607 (in Chinese).
9 李萍, 丁永根, 姚彭彭, 等. 基于响应面法的TA15钛合金显微组织预报和优化[J]. 中国有色金属学报201626(5): 1019-1026.
  LI P, DING Y G, YAO P P, et al. Prediction and optimization of TA15 titanium alloy microstructure based on response surface methodology[J]. The Chinese Journal of Nonferrous Metals201626(5): 1019-1026 (in Chinese).
10 SHEN Z N, WU R D, YUAN C L, et al. Comparative study of metamodeling methods for modeling the constitutive relationships of the TC6 titanium alloy[J]. Journal of Materials Research and Technology202110: 188-204.
11 徐勇, 尹阔, 夏亮亮, 等. 面向航空铝合金薄壁深腔构件的冲击液压成形工艺优化[J]. 航空学报202142(10): 524831.
  XU Y, YIN K, XIA L L, et al. Optimization of impact hydroforming process for aeronautical components of aluminum alloy sheets with thin wall and deep cavity[J]. Acta Aeronautica et Astronautica Sinica202142(10): 524831 (in Chinese).
12 LONG J C, XIA Q X, XIAO G F, et al. Flow characterization of magnesium alloy ZK61 during hot deformation with improved constitutive equations and using activation energy maps[J]. International Journal of Mechanical Sciences2021191: 106069.
13 BABU K A, PRITHIV T S, GUPTA A, et al. Modeling and simulation of dynamic recrystallization in super austenitic stainless steel employing combined cellular automaton, artificial neural network and finite element method[J]. Computational Materials Science2021195: 110482.
14 JIANG Y Q, LIN Y C, WANG G Q, et al. Microstructure evolution and a unified constitutive model for a Ti-55511 alloy deformed in β region[J]. Journal of Alloys and Compounds2021870: 159534.
15 XIAO Y W, LIN Y C, JIANG Y Q, et al. A dislocation density-based model and processing maps of Ti-55511 alloy with bimodal microstructures during hot compression in α+β region[J]. Materials Science and Engineering: A2020790: 139692.
16 LU C Y, WANG J, ZHANG P Z. Flow behavior analysis and flow stress modeling of Ti17 alloy in β forging process[J]. Journal of Materials Engineering and Performance202130(10): 7668-7681.
17 尚丽梅, 王春旭, 韩顺, 等. 基于摩擦-温度双修正的Maraging250钢热变形行为及热加工图[J]. 金属热处理202146(5): 111-117.
  SHANG L M, WANG C X, HAN S, et al. Hot deformation behavior and processing maps of Maraging250 steel based on friction and temperature double correction[J]. Heat Treatment of Metals202146(5): 111-117 (in Chinese).
18 LI L X, WANG G, LIU J, et al. Flow softening behavior and microstructure evolution of Al-5Zn-2Mg aluminum alloy during dynamic recovery[J]. Transactions of Nonferrous Metals Society of China201424(1): 42-48.
19 MOON J, JO H H, HA H Y, et al. Microstructure evolution and hot deformation behavior of 25Cr-6Mn-3Ni-1Mo-3W-0.1C-0.34N lean duplex stainless steel[J]. Journal of Materials Research and Technology202114: 186-194.
20 牛长胜, 王艳丽, 林均品, 等. Fe3Si基合金的动态再结晶机制[J]. 金属热处理学报200324(1): 28-32, 92.
  NIU C S, WANG Y L, LIN J P, et al. Dynamic recrystallization mechanism of the Fe3Si based alloy[J]. Transactions of Metal Heat Treatment200324(1): 28-32, 92 (in Chinese).
21 YU S, WAN Z P, HU L X, et al. Characterization of hot processing parameters of powder metallurgy TiAl-based alloy based on the activation energy map and processing map[J]. Materials & Design201586: 922-932.
22 亓耀国, 郭子鹏, 王兆天, 等. Ti-Al-Nb合金的热变形与动态再结晶行为研究[J]. 精密成形工程202012(6): 69-76.
  QI Y G, GUO Z P, WANG Z T, et al. Thermal deformation and dynamic recrystallization of Ti-Al-Nb alloys[J]. Journal of Netshape Forming Engineering202012(6): 69-76 (in Chinese).
23 QIU Q, WANG K L, LI X, et al. Hot deformation behavior and processing parameters optimization of SP700 titanium alloy[J]. Journal of Materials Research and Technology202115: 3078-3087.
24 曹富荣, 崔建忠, 丁桦, 等. 不同初始组织材料超塑性m值模型与验证[J]. 哈尔滨工业大学学报201547(10): 50-54.
  CAO F R, CUI J Z, DING H, et al. Modeling them value and its experimental verification during superplasticity of materials with different initial microstructures[J]. Journal of Harbin Institute of Technology201547(10): 50-54 (in Chinese).
25 BOX G E P, WILSON K B. On the experimental attainment of optimum conditions[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology195113(1): 1-38.
26 陈利文, 侯华, 靳玉春, 等. 基于响应面法的铝合金间接挤压铸造工艺研究[J]. 稀有金属材料与工程201847(4): 1174-1179.
  CHEN L W, HOU H, JIN Y C, et al. Indirect squeeze casting process of aluminum alloy based on response surface method[J]. Rare Metal Materials and Engineering201847(4): 1174-1179 (in Chinese).
27 豆建新, 熊江涛, 陈丹, 等. 7050铝合金回填式搅拌摩擦点焊组织与性能研究[J]. 精密成形工程201911(6): 81-88.
  DOU J X, XIONG J T, CHEN D, et al. Microstructures and mechanical properties of refill friction stir spot welded 7050 aluminium alloy[J]. Journal of Netshape Forming Engineering201911(6): 81-88 (in Chinese).
28 WANG J M, LAN S, LI W K. Numerical simulation and process optimization of an aluminum holding furnace based on response surface methodology and uniform design[J]. Energy201472: 521-535.
29 SHI C, MAO W, CHEN X G. Evolution of activation energy during hot deformation of AA7150 aluminum alloy[J]. Materials Science and Engineering: A2013571: 83-91.
30 XIAO Z B, WANG Q, HUANG Y C, et al. Hot deformation characteristics and processing parameter optimization of Al-6.32Zn-2.10Mg alloy using constitutive equation and processing map[J]. Metals202111(2): 360.
31 王兴茂, 丁雨田, 高钰璧, 等. 一种新型Ni-Cr-Co基合金的热变形行为及其组织演变[J]. 稀有金属材料与工程202251(1): 249-259.
  WANG X M, DING Y T, GAO Y B, et al. Hot deformation behavior and microstructure evolution of new-type Ni-Cr-Co based alloy[J]. Rare Metal Materials and Engineering202251(1): 249-259 (in Chinese).
Outlines

/